Skip to main content
Log in

Recent Progress in Silane Coupling Agent with Its Emerging Applications

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper presents the effects of silane coupling agent, which includes interfacial adhesive strength, water treatment, polymer composites and coatings that make it valuable for multi-materialization. The methoxy-type silane coupling agent composites-based modification is discussed using different methods exhibiting higher reactivity towards hydrolysis. The characteristics of developed vulcanization, in particular the dimethoxy-type silane-coupling agents than the trimethoxy-type have improved properties such as environment friendly fabrication process, mechanical, physical, swelling and dynamic viscoelastic properties of composites. The modification of aggregated surface along with asphalt binder excel their properties. Specifically, the silane coupling agent (SCA) Glycidoxypropyl trimethoxysilane (KH-560) utilization realizes the modification purpose. This review focuses on synthetic approaches, surface modification, surface thermodynamic properties, techniques, salinization reaction and recent development in use of silane modifiers in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

copyright 2021, AIP). b Surface modification of aramid fibers with CaCl2 treatment and secondary functionalization of silane coupling agents (Copied with permission, copyright 2021, Wiley)

Fig. 2

copyright 2021, Wiley)

Fig. 3

copyright 2021, Hindawi). b Effects of different silane coupling agents on structure and properties of starch–chitosan–kaolin composites. (Copied with permission, copyright 2021, Wiley)

Fig. 4

copyright 2021, Springer)

Fig. 5

copyright 2021, Springer)

Fig. 6

copyright 2021, Springer)

Fig. 7 

copyright 2021, Springer) (Color figure online)

Fig. 8

copyright 2021, Springer)

Fig. 9 

copyright 2021, Elsevier)

Similar content being viewed by others

References

  1. Okhrimenko DV, Budi A, Ceccato M, Cardenas M, Johansson DB, Lybye D, Bechgaard K, Andersson MP, Stipp SLS (2017) Hydrolytic stability of 3-aminopropylsilane coupling agent on silica and silicate surfaces at elevated temperatures. ACS Appl Mater Interfaces 9(9):8344–8353. https://doi.org/10.1021/acsami.6b14343

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Jiang X, Wang C, Huang Y, Meng Y, Shao J (2020) Titanium dioxide grafted with silane coupling agents and its use in blue light curing ink. Color Technol 136(1):15–22. https://doi.org/10.1111/cote.12434

    Article  CAS  Google Scholar 

  3. Rashid MH, Yuan Y-x (2017) Convergence properties of a restricted Newton-type method for generalized equations with metrically regular mappings. Appl Anal. https://doi.org/10.1080/00036811.2017.1392018

    Article  Google Scholar 

  4. Ahmed N, Fan H, Dubois P, Zhang X, Fahad S, Aziz T, Wan J (2019) Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. J Mater Chem A 7(38):21577–21604. https://doi.org/10.1039/C9TA04575A

    Article  CAS  Google Scholar 

  5. Silva M, Azenha M, Pereira M, Burrows H, Sarakha M, Forano C, Ribeiro M, Fernandes A (2010) Immobilization of halogenated porphyrins and their copper complexes in MCM-41: environmentally friendly photocatalysts for the degradation of pesticides. Appl Catal B 100:1–9. https://doi.org/10.1016/j.apcatb.2010.07.033

    Article  CAS  Google Scholar 

  6. Nguyen T-C, Nguyen T-D, Vu D-T, Dinh D-P, Nguyen A-H, Ly T-N-L, Dao P-H, Nguyen T-L, Bach L-G, Thai H (2020) Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl)propyl methacrylate silane coupling agent. J Chem-Ny 2020:1381407. https://doi.org/10.1155/2020/1381407

    Article  CAS  Google Scholar 

  7. Norizan N, Santiagoo R, Ismail H (2017) Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites. 1865(1): 1–13. https://doi.org/10.1063/1.4993359

  8. Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M (2020) Advance study of cellulose nanocrystals properties and applications. J Polym Environ 28(4):1117–1128. https://doi.org/10.1007/s10924-020-01674-2

    Article  CAS  Google Scholar 

  9. Aziz T, Fan H, Haq F, Khan FU, Numan A, Ullah A, Wazir N (2019) Facile modification and application of cellulose nanocrystals. Iran Polym J 28(8):707–724. https://doi.org/10.1007/s13726-019-00734-2

    Article  Google Scholar 

  10. Zhou A, Yu Z, Wei H, Tam L-h, Liu T, Zou D (2020) Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites. ACS Appl Mater Interfaces 12(39):44163–44171. https://doi.org/10.1021/acsami.0c12477

    Article  CAS  PubMed  Google Scholar 

  11. Irfan M, Khan M, Rehman Tu, Ali I, Shah LA, Khattak NS, Khan MS (2020) Synthesis and rheological survey of xanthan gum based terpolymeric hydrogels. Z Phys Chem. https://doi.org/10.1515/zpch-2019-1574

    Article  Google Scholar 

  12. El-Nemr KF, El-Naggar MY, Fathy ES (2018) Waste ceramic dust activated by gamma radiation and coupling agents as reinforcement for nitrile rubber. J Vinyl Addit Technol 24(1):37–43. https://doi.org/10.1002/vnl.21515

    Article  CAS  Google Scholar 

  13. Nakamura T, Tabuchi H, Hirai T, Fujii S, Nakamura Y (2020) Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particle-filled epoxy resin. J Appl Polym Sci 137(17):48615. https://doi.org/10.1002/app.48615

    Article  CAS  Google Scholar 

  14. Khattak NS, Shah LA, Sohail M, Ahmad S, Farooq M, Ara L, Kader SI (2019) The role of non-ionic surfactants in solubilization and delivery of sparingly soluble drug naproxen sodium (NS): a case study. Z Phys Chem 233(7):933–947. https://doi.org/10.1515/zpch-2018-1241

    Article  CAS  Google Scholar 

  15. Aziz T, Fan H, Khan FU, Haroon M, Cheng L (2019) Modified silicone oil types, mechanical properties and applications. Polym Bull 76(4):2129–2145. https://doi.org/10.1007/s00289-018-2471-2

    Article  CAS  Google Scholar 

  16. Shen J, Hu Y, Li L-X, Sun J-w, Kan C-y (2018) Fabrication and characterization of polysiloxane/polyacrylate composite latexes with balanced water vapor permeability and mechanical properties: effect of silane coupling agent. J Coat Technol Res 15(1):165–173. https://doi.org/10.1007/s11998-017-9970-1

    Article  CAS  Google Scholar 

  17. Jamil MI, Zhan X, Chen F, Cheng D, Zhang Q (2019) Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. ACS Appl Mater Interfaces 11(34):31532–31542. https://doi.org/10.1021/acsami.9b09819

    Article  CAS  PubMed  Google Scholar 

  18. Khattak NS, Khan MS, Shah LA, Farooq M, Khan A, Ahmad S, Jan SU, Rehman N (2020) The effect of low weight percent multiwalled carbon nanotubes on the dielectric properties of non-conducting polymer/ceramic nanocomposites for energy storage materials. Z Phys Chem 234(1):11–26. https://doi.org/10.1515/zpch-2019-1370

    Article  CAS  Google Scholar 

  19. Mallakpour S, Khani Z (2018) Fabrication of poly(vinyl alcohol) nanocomposites having different contents of modified SiO2 by vitamin B1 as biosafe and novel coupling agent to improve mechanical and thermal properties. Polym Compos 39(S3):E1589–E1597. https://doi.org/10.1002/pc.24517

    Article  CAS  Google Scholar 

  20. Aziz T, Ullah A, Fan H, Ullah R, Haq F, Khan FU, Iqbal M, Wei J (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ. https://doi.org/10.1007/s10924-021-02045-1

    Article  Google Scholar 

  21. Mallakpour S, Nezamzadeh Ezhieh A (2018) Citric acid and vitamin C as coupling agents for the surface coating of ZrO2 nanoparticles and their behavior on the optical, mechanical, and thermal properties of poly(vinyl alcohol) nanocomposite films. J Polym Environ 26(7):2813–2824. https://doi.org/10.1007/s10924-017-1170-7

    Article  CAS  Google Scholar 

  22. Rehman TU, Shah LA, Khan M, Irfan M, Khattak NS (2019) Zwitterionic superabsorbent polymer hydrogels for efficient and selective removal of organic dyes. RSC Adv 9(32):18565–18577. https://doi.org/10.1039/C9RA02488C

    Article  CAS  Google Scholar 

  23. Aziz T, Zheng J, Jamil MI, Fan H, Ullah R, Iqbal M, Ali A, Khan FU, Ullah A (2021) Enhancement in adhesive and thermal properties of bio-based epoxy resin by using eugenol grafted cellulose nanocrystals. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-021-01942-1

    Article  Google Scholar 

  24. Zheng W, Tang C, Xie J, Gui Y (2019) Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface. Nanotechnology 30(44):445701. https://doi.org/10.1088/1361-6528/ab3546

    Article  CAS  PubMed  Google Scholar 

  25. Jamil MI, Ali A, Haq F, Zhang Q, Zhan X, Chen F (2018) Icephobic strategies and materials with superwettability: design principles and mechanism. Langmuir 34(50):15425–15444. https://doi.org/10.1021/acs.langmuir.8b03276

    Article  CAS  PubMed  Google Scholar 

  26. Aziz T, Fan H, Ullah R, Haq F, Khan FU, Jiao W, Iqbal M, Raheel M, Kiran M, Ullah A (2020) Facile synthesis and synergistic effect of calcium sulfate fillers on the adhesive properties of bisphenol A (DGEBA) epoxy resin. Mater Int 2(3):0342–0350. https://doi.org/10.33263/Materials23.342350

    Article  Google Scholar 

  27. Huang C, Huang Z, Lv X, Zhang G, Wang Q, Wang B (2017) Surface modification of hollow glass microsphere with different coupling agents for potential applications in phenolic syntactic foams. J Appl Polym Sci 134(4):1–13. https://doi.org/10.1002/app.44415

    Article  CAS  Google Scholar 

  28. Khattak NS, Ahmad AS, Shah LA, Ara L, Farooq M, Sohail M, Kadir SI (2019) Thermal and rheological study of nanocomposites, reinforced with bi-phase ceramic nanoparticles. Z Phys Chem 233(9):1233–1246. https://doi.org/10.1515/zpch-2018-1338

    Article  CAS  Google Scholar 

  29. Silveira Hornung P, Avila S, Apea-Bah FB, Liu J, Lopes Teixeira G, Hoffmann Ribani R, Beta T (2020) Sustainable use of ilex paraguariensis waste in improving biodegradable corn starch films mechanical, thermal and bioactive properties. J Polym Environ 28(6):1696–1709. https://doi.org/10.1007/s10924-020-01723-w

    Article  CAS  Google Scholar 

  30. Daghigh V, Lacy TE Jr, Pittman CU Jr, Daghigh H (2018) Influence of maleated polypropylene coupling agent on mechanical and thermal behavior of latania fiber-reinforced PP/EPDM composites. Polym Compos 39(S3):E1751–E1759. https://doi.org/10.1002/pc.24752

    Article  CAS  Google Scholar 

  31. Zaman U, Naz R, Khattak NS, Rehman KU, Saeed A, Farooq M, Sahar J, Iqbal A (2021) Kinetic and thermodynamic studies of novel acid phosphates extracted from Cichorium intybus seedlings. Int J Biol Macromol 168:195–204. https://doi.org/10.1016/j.ijbiomac.2020.12.032

    Article  CAS  PubMed  Google Scholar 

  32. Zheng J, Aziz T, Fan H, Haq F, Khan FU, Ullah R, Ullah B, Khattak NS, Wei J (2020) Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior. Z Phys Chem. https://doi.org/10.1515/zpch-2020-1697

    Article  Google Scholar 

  33. Rashno A, Mohebi Damabi R, Rezaee Niaraki P, Ahmadi S (2018) A new amino silane coupling agent for old corrugated container fibers/high density polyethylene composites. Polym Compos 39(6):2054–2064. https://doi.org/10.1002/pc.24167

    Article  CAS  Google Scholar 

  34. Wu W, Zuo H (2018) Silicone rubber composites modified by chopped basalt fibers treated with coupling agent. Silicon-Neth 10(6):2555–2559. https://doi.org/10.1007/s12633-018-9790-7

    Article  CAS  Google Scholar 

  35. Chen M, Wu L, Li Z (2019) Synthesis of fluoroalkylsilane-coupling agents and their self-assembled monolayers. Chem Pap 73(10):2551–2562. https://doi.org/10.1007/s11696-019-00809-7

    Article  CAS  Google Scholar 

  36. Wang L, Tang C, Wang X, Zheng W (2019) Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2. Aip Adv 9(12):125134. https://doi.org/10.1063/1.5131821

    Article  CAS  Google Scholar 

  37. Alotabi MD, Alshammari BA, Saba N, Alothman OY, Kian LK, Khan A, Jawaid M (2020) Microcrystalline cellulose from fruit bunch stalk of date palm: isolation and characterization. J Polym Environ 28(6):1766–1775. https://doi.org/10.1007/s10924-020-01725-8

    Article  CAS  Google Scholar 

  38. Zhang S, Shi Z, Cui P, Duan N, Li X (2020) Surface modification of aramid fibers with CaCl 2 treatment and secondary functionalization of silane coupling agents. J Appl Polym Sci 137(49159):1–9. https://doi.org/10.1002/app.49159

    Article  CAS  Google Scholar 

  39. Yun J, Chen L, Zhao H, Zhang X, Ye W, Zhu D (2019) Boric acid as a coupling agent for preparation of phenolic resin containing boron and silicon with enhanced char yield. Macromol Rapid Commun 40(17):1800702. https://doi.org/10.1002/marc.201800702

    Article  CAS  Google Scholar 

  40. Yan P, Wang Y, Wang M, Lu J, Han F (2017) Preparation and characterization of fibrous sepiolite modified silane coupling agent/fluororubber nanocomposite. Polym Compos 38(S1):E208–E213. https://doi.org/10.1002/pc.23839

    Article  CAS  Google Scholar 

  41. Yuan Y, Lin H, Yu D, Yin Y, Tang B, Li E, Zhang S (2017) Effects of perfluorooctyltriethoxysilane coupling agent on the properties of silica filled PTFE composites. J Mater Sci: Mater Electron 28(12):8810–8817. https://doi.org/10.1007/s10854-017-6608-0

    Article  CAS  Google Scholar 

  42. Li X, Wang X, Yang L, Zhang F, Xie L, Luo Z, Xiang K (2019) Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water-resistant and mechanical performances of glass fiber–reinforced polyamide 6. Polym Adv Technol 30(8):1951–1958. https://doi.org/10.1002/pat.4627

    Article  CAS  Google Scholar 

  43. Pisanu L, Barbosa J, Souza R, Nascimento M (2019) Evaluating the influence of coupling agents in the structural properties of polypropylene coconut fiber composites. Mater Res Express 6(115320):1–12. https://doi.org/10.1088/2053-1591/ab4626

    Article  CAS  Google Scholar 

  44. Aziz T, Fan H, Khan FU, Ullah R, Haq F, Iqbal M, Ullah A (2020) Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Z Phys Chem 234(11–12):1759–1769. https://doi.org/10.1515/zpch-2019-1434

    Article  CAS  Google Scholar 

  45. Chun KS, Yeng CM, May CP, Yeow TK, Kiat OT, How CK (2020) Effect of coupling agent content on properties of composites made from polylactic acid and chrysanthemum waste. J Vinyl Addit Technol 26(1):10–16. https://doi.org/10.1002/vnl.21710

    Article  CAS  Google Scholar 

  46. Li Z, Wan J, Li Y, Li Y, Zhao F, Zhao S (2018) Effects of coupling agents on the properties of an NR/SBR matrix and its adhesion to continuous basalt fiber cords. J Appl Polym Sci 136:47098. https://doi.org/10.1002/app.47098

    Article  CAS  Google Scholar 

  47. Li C, Fan H, Aziz T, Bittencourt C, Wu L, Wang D-Y, Dubois P (2018) Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties. ACS Sustain Chem Eng 6(7):8856–8867. https://doi.org/10.1021/acssuschemeng.8b01212

    Article  CAS  Google Scholar 

  48. Jamil MI, Song L, Zhu J, Ahmed N, Zhan X, Chen F, Cheng D, Zhang Q (2020) Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Adv 10(33):19157–19168. https://doi.org/10.1039/D0RA01786H

    Article  CAS  Google Scholar 

  49. Ge X, Zhang Z, Yu H, Zhang B (2019) The influences of silane coupling agents on rheological properties of bentonite/nitrile butadiene rubber nanocomposites during curing process. J Vinyl Addit Technol 25(3):236–242. https://doi.org/10.1002/vnl.21672

    Article  CAS  Google Scholar 

  50. Huynh MD, Trung TH, Thai NT, Van Cong D, Tung NH, Giang NV (2019) Effect of (3-aminopropyl)triethoxysilane coupling agent on characteristics and mechanical properties of polylactic acid/jute fiber biocomposite. Vietnam J Chem 57(1):90–95. https://doi.org/10.1002/vjch.201960015

    Article  CAS  Google Scholar 

  51. Aziz T, Fan H, Zhang X, Khan FU (2019) Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4df6

    Article  Google Scholar 

  52. Hamour N, Boukerrou A, Djidjelli H, Beaugrand J (2019) In situ grafting effect of a coupling agent on different properties of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/olive husk flour composite. Polym Bull 76(12):6275–6290. https://doi.org/10.1007/s00289-019-02725-y

    Article  CAS  Google Scholar 

  53. Aziz T, Fan H, Zhang X, Khan FU, Fahad S, Ullah A (2020) Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J Polym Eng 40(4):314–320. https://doi.org/10.1515/polyeng-2019-0255

    Article  CAS  Google Scholar 

  54. Valencia-Bermudez S, Hernandez-Lopez S, Gutierrez-Nava M, Rojas-Garcia J-M, Lugo-Uribe L-E (2020) Chain-end functional di-sorbitan oleate monomer obtained from renewable resources as precursors for bio-based polyurethanes. J Polym Environ 28(5):1406–1419. https://doi.org/10.1007/s10924-020-01692-0

    Article  CAS  Google Scholar 

  55. Deetuam C, Samthong C, Choksriwichit S, Somwangthanaroj A (2020) Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran Polym J 29(2):103–116. https://doi.org/10.1007/s13726-019-00778-4

    Article  CAS  Google Scholar 

  56. Aziz T, Fan H, Haq F, Khan FU, Numan A, Iqbal M, Raheel M, Kiran M, Wazir N (2020) Adhesive properties of poly (methyl silsesquioxanes)/bio-based epoxy nanocomposites. Iran Polym J 29(10):911–918. https://doi.org/10.1007/s13726-020-00849-x

    Article  CAS  Google Scholar 

  57. Ahsan HM, Zhang X, Li Y, Li B, Liu S (2019) Surface modification of microcrystalline cellulose: physicochemical characterization and applications in the Stabilization of Pickering emulsions. Int J Biol Macromol 132:1176–1184. https://doi.org/10.1016/j.ijbiomac.2019.04.051

    Article  CAS  PubMed  Google Scholar 

  58. Chan CM, Vandi L-J, Pratt S, Halley P, Richardson D, Werker A, Laycock B (2020) Mechanical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs). J Polym Environ 28(5):1571–1577. https://doi.org/10.1007/s10924-020-01697-9

    Article  CAS  Google Scholar 

  59. Song J, Xu M, Liu W, Wang X, Xu P, Huang F, Pan Y (2019) Thermoplastic rubber (TPR) modified by a silane coupling agent and its influence on the mechanical properties of oil well cement pastes. Adv Mater Sci Eng 2019:3587081. https://doi.org/10.1155/2019/3587081

    Article  CAS  Google Scholar 

  60. Zhang Z, Ge X, Xing R, Zhang B (2019) Effects of different silane coupling agents on structure and properties of starch–chitosan–kaolin composites. J Appl Polym Sci 136(43):48050. https://doi.org/10.1002/app.48050

    Article  CAS  Google Scholar 

  61. Khamtree S, Ratanawilai T, Ratanawilai S (2020) The effect of alkaline-silane treatment of rubberwood flour for water absorption and mechanical properties of plastic composites. J Thermoplast Compos 33(5):599–613. https://doi.org/10.1177/0892705718808556

    Article  CAS  Google Scholar 

  62. Feng NL, Malingam SD, Razali N, Subramonian S (2020) Alkali and silane treatments towards exemplary mechanical properties of kenaf and pineapple leaf fibre-reinforced composites. J Bionic Eng 17(2):380–392. https://doi.org/10.1007/s42235-020-0031-6

    Article  Google Scholar 

  63. Agrebi F, Hammami H, Asim M, Jawaid M, Kallel A (2020) Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. J Compos Mater 54(7):937–946. https://doi.org/10.1177/0021998319871351

    Article  CAS  Google Scholar 

  64. Bs R, Balaji Mas AB, Man, (2019) Effect of silane surface treatment on the physico-mechanical properties of shell powder reinforced epoxy modified phenolic friction composite. Mater Res Express 6(6):065315. https://doi.org/10.1088/2053-1591/ab0ca5

    Article  CAS  Google Scholar 

  65. Ezechukwu VC, Nwobi-Okoye CC, Atanmo PN (2020) Surface modification of Momordica angustisepala fiber using temperature-activated amino-functionalized alkali-silane treatment. Int J Adv Manuf Technol 109(5):1397–1407. https://doi.org/10.1007/s00170-020-05697-w

    Article  Google Scholar 

  66. Azizah AB, Rozman HD, Azniwati AA, Tay GS (2020) The effect of filler loading and silane treatment on kenaf core reinforced polyurethane composites: mechanical and thermal properties. J Polym Environ 28(2):517–531. https://doi.org/10.1007/s10924-019-01623-8

    Article  CAS  Google Scholar 

  67. Fathi B, Foruzanmehr M, Elkoun S, Robert M (2019) Novel approach for silane treatment of flax fiber to improve the interfacial adhesion in flax/bio epoxy composites. J Compos Mater 53(16):2229–2238. https://doi.org/10.1177/0021998318824643

    Article  CAS  Google Scholar 

  68. Xiao J, Yu B, Yuan J, Yao Z, Zhong Q, Zhang L (2019) Modification of activated carbon with a silane coupling agent under ultrasonic conditions for the advanced treatment of wastewater with dressing chemicals. Color Technol 135(1):67–76. https://doi.org/10.1111/cote.12371

    Article  CAS  Google Scholar 

  69. Zhang E, Wang L, Zhang B, Xie Y, Wang G (2020) Enhanced photocatalytic performance of polyvinylidene fluoride membrane by doped CuFe2O4 nanocrystals for water treatment. J Sol-Gel Sci Technol 93(2):452–461. https://doi.org/10.1007/s10971-019-05209-7

    Article  CAS  Google Scholar 

  70. Fan X-M, Yu H-Y, Wang D-C, Mao Z-H, Yao J, Tam KC (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7(21):18067–18075. https://doi.org/10.1021/acssuschemeng.9b05081

    Article  CAS  Google Scholar 

  71. Li J, Wang L, Gao X (2019) Effect of structure change on luminescent properties of CsPbBr2I perovskite nanocrystals after heat treatment. Aust J Chem 72(9):663–668. https://doi.org/10.1071/CH19080

    Article  CAS  Google Scholar 

  72. Li D, Chen C-S, Wu Y-H, Zhu Z-G, Shih WY, Shih W-H (2020) Improving stability of cesium lead iodide perovskite nanocrystals by solution surface treatments. ACS Omega 5(29):18013–18020. https://doi.org/10.1021/acsomega.0c01403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han W, Kim J, Park HH (2019) Control of electrical conductivity of highly stacked zinc oxide nanocrystals by ultraviolet treatment. Sci Rep 9(1):6244. https://doi.org/10.1038/s41598-019-42102-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valeeva AA, Nazarova SZ, Schröttner H, Gerasimov EY, Rempel AA (2020) Effects of high mechanical treatment and long-term annealing on crystal structure and thermal stability of Ti2O3 nanocrystals. RSC Adv 10(43):25717–25720. https://doi.org/10.1039/D0RA03862H

    Article  CAS  Google Scholar 

  75. Ling Z, Edwards JV, Guo Z, Prevost NT, Nam S, Wu Q, French AD, Xu F (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26(2):861–876. https://doi.org/10.1007/s10570-018-2092-9

    Article  CAS  Google Scholar 

  76. Zhong Q, Liu J, Chen S, Li P, Chen J, Guan W, Qiu Y, Xu Y, Cao M, Zhang Q (2020) Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy. Adv Opt Mater. https://doi.org/10.1002/adom.202001763

    Article  Google Scholar 

  77. Takeshita T (2020) Computational study of cresyl violet covalently attached to the silane coupling agents: application to TiO2-based photocatalysts and dye-sensitized solar cells. Nanomaterials-Basel 10(10):1–16. https://doi.org/10.3390/Nano10101958

    Article  Google Scholar 

  78. Li HT, Zhang D, Li ZC, Li LY, Liu JC, Li YG (2020) Application of a coupling agent to improve the dielectric properties of polymer-based nanocomposites. Jove-J Vis Exp. https://doi.org/10.3791/60916

    Article  Google Scholar 

  79. Fujii T, Uchimura T (2017) Application of laser ionization time-of-flight mass spectrometry for the direct measurement of a silane coupling agent in slurries. Anal Sci 33(3):395–397. https://doi.org/10.2116/analsci.33.395

    Article  CAS  PubMed  Google Scholar 

  80. Siy BSC, Tan JAXC, Viron KP, Sajor NJB, Santos GNC, Penaloza DP (2020) Application of silane coupling agents to abaca fibers for hydrophobic modification. Cell Chem Technol 54(3–4):365–369. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.37

    Article  CAS  Google Scholar 

  81. Madhu C, Kaur I, Kaur N (2017) Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent- for application in LEDs. J Mater Sci: Mater Electron 28(9):6388–6398. https://doi.org/10.1007/s10854-016-6323-2

    Article  CAS  Google Scholar 

  82. Zheng J, Zhang X, Cao J, Chen R, Aziz T, Fan H, Bittencourt C (2021) Behavior of epoxy resin filled with nano-SiO2 treated with a eugenol epoxy silane. J Appl Polym Sci 138(14):50138. https://doi.org/10.1002/app.50138

    Article  CAS  Google Scholar 

  83. Zhang D, Zhou J, Shen F (2021) A hybrid gel polymer electrolyte with imide groups modified by the coupling agent and its application in electrochromic devices. J Sol-Gel Sci Technol 97:393–403. https://doi.org/10.1007/s10971-020-05402-z

    Article  CAS  Google Scholar 

  84. Martin PR, Buchner D, Jochmann MA, Haderlein SB (2020) Stable carbon isotope analysis of polyphosphonate complexing agents by anion chromatography coupled to isotope ratio mass spectrometry: method development and application. Anal Bioanal Chem 412(20):4827–4835. https://doi.org/10.1007/s00216-019-02251-w

    Article  CAS  PubMed  Google Scholar 

  85. Ahmed N, Zhang X, Fahad S, Jamil MI, Aziz T, Husamelden E, Bittencourt C, Wan J, Fan H (2020) Silsesquioxanes-based nanolubricant additives with high thermal stability, superhydrophobicity, and self-cleaning properties. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04897-6

    Article  Google Scholar 

  86. Wang H, Yuan Y, Chi Z, Yang Z, Li E, Tang B (2019) Researches on silane coupling agent treated AlN ceramic powder and fabrication of AlN/PTFE composites for microwave substrate applications. J Mater Sci: Mater Electron 30(22):20189–20197. https://doi.org/10.1007/s10854-019-02402-w

    Article  CAS  Google Scholar 

  87. Siy B, Tan J, Viron K, Sajor N, Santos GN, Penaloza D (2020) Cellulose chemistry and technology application of silane coupling agents to abaca fibers for hydrophobic modification. Cell Chem Technol 54:365–369. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.37

    Article  CAS  Google Scholar 

  88. Jiang M, Xiong Y, Xue B, Zhang Q, Wan Q, Zhao H (2018) Multi-layer graphene oxide synergistically modified by two coupling agents and its application in reinforced natural rubber composites. RSC Adv 8(52):29847–29854. https://doi.org/10.1039/C8RA05016C

    Article  CAS  Google Scholar 

  89. Nguyen MH, O’Brien KT, Smith AB (2017) Design, synthesis, and application of polymer-supported silicon-transfer agents for cross-coupling reactions with organolithium reagents. J Org Chem 82(20):11056–11071. https://doi.org/10.1021/acs.joc.7b02004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salarizadeh P, Javanbakht M, Pourmandian S, Bagheri A, Beydaghi H, Enhessari M (2016) Surface modification of Fe2TiO5 nanoparticles by silane coupling agent: synthesis and application in proton exchange composite membranes. J Colloid Interface Sci 472:135–144. https://doi.org/10.1016/j.jcis.2016.03.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their parent institution for providing the necessary facilities to complete the current research.

Funding

This research was funded by State Key Laboratory of Chemical Engineering, Zhejiang University 310027. Hangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, T., Ullah, A., Fan, H. et al. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J Polym Environ 29, 3427–3443 (2021). https://doi.org/10.1007/s10924-021-02142-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02142-1

Keywords

Navigation