Skip to main content
Log in

Diffusion in polymers dependence on crosslink density

Eyring approach to mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics of N-methyl pyrrolidone evaporation from swollen photo-crosslinked polyacrylate was monitored thermogravimetrically at temperatures ranging from 323 to 398 K. Crosslink density dependence of evaporation kinetics was investigated in photo-crosslinked polyacrylates with crosslinked density ranging from ≈1.2 × 102 to ≈1.7 × 104 mol m−3 and number of main chain atoms between crosslinks ranging from ≈70 atoms to ≈6 atoms, respectively. As was shown, evaporation kinetics was controlled by the solvent diffusion in polymer. Activation energies of evaporation (diffusion) were deduced from the rate measurements at different temperatures. Apparent activation energy of evaporation decreased from 48.7 to 31.1 kJ mol−1 with crosslink density increase. Activation energy of pure N-methyl pyrrolidone evaporation was 50.6 kJ mol−1. Decrease of the rate of solvent diffusion and unexpected decrease of diffusion activation energy with increase of crosslink density of swollen polymer matrix was explained by decrease in polymer chain segments mobility, as indicated by Eyring’s approach to diffusion in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Koros WJ, editor. Barrier polymers and structures. Washington, DC, USA: ACS; 1990.

    Google Scholar 

  2. Mulder M. Basic principles of membrane technology. The Netherlands: Dordrecht, Kluwer Academic Publication; 1997.

  3. Rosoff M, editor. Controlled release of drugs: polymers and aggregate systems. Weinheim: VCH Verlagsgesellschaft; 1989.

  4. Wypych G. Handbook of material weathering. 3rd ed. Toronto, New York: William Andrew Publication; 2003.

    Google Scholar 

  5. Krongauz VV, Ling MTK. Photo-crosslinked acrylates degradation kinetics. J Therm Anal Calorim. 2009;96:715–25.

    Article  CAS  Google Scholar 

  6. Krongauz VV, Trifunac AD, editors. Processes in photoreactive polymers. New York, Tokyo, Toronto, Washington: Chapman & Hall; 1995.

    Google Scholar 

  7. Crank J, Park GS, editors. Diffusion in polymers. New York: Academic Press; 1968.

    Google Scholar 

  8. Herschfelder JO, Curtis CF, Bird RB. Molecular theory of gases and liquids. London, Chichester, Brisbane, Toronto: John Wiley & Sons; 1954.

    Google Scholar 

  9. Eyring HJ. Viscosity, plasticity and diffusion as examples of absolute reaction rates. J Chem Phys. 1936;4:283–91.

    Article  CAS  Google Scholar 

  10. Glasstone S, Laidler KJ, Eyring HJ. The theory of rate processes. New York: McGraw Hill; 1941.

    Google Scholar 

  11. Eyring H, Ree T. Significant liquid structure. VI. The vacancy theory of liquids. Proc Natl Acad Sci USA. 1961;47:526–37.

    Article  CAS  Google Scholar 

  12. Errede LA, van Bogart JWC. Polymer drying. II. Replicated time-studies of molecular desorption from liquid swollen poly(styrene-co-divinylbenzene) before and after transition from gel-state to the glass-state. J Polym Sci A. 1989;27:2015–49.

    Article  CAS  Google Scholar 

  13. Errede LA. Polymer drying. IV. A molecular interpretation of polymer drying. J Polym Sci A. 1990;28:857–70.

    Article  CAS  Google Scholar 

  14. Peppas NA, Reinhart CT. Solute diffusion in swollen membranes. Part I. A new theory. J Memb Sci. 1983;15:275–87.

    Article  CAS  Google Scholar 

  15. Reinhart CT, Peppas NA. Solute diffusion in swollen membranes. Part II. Influence of crosslinking on diffusive properties. J Appl Polym Sci. 1984;18:227–39.

    CAS  Google Scholar 

  16. Peppas NA, Moynihan HJ. Solute diffusion in swollen membranes. Part IV. Theories for moderately swollen networks. J Appl Polym Sci. 1985;30:2589–606.

    Article  CAS  Google Scholar 

  17. Korsmeyer RW, Lustig SR, Peppas NA. Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci. 1986;24:395–408.

    CAS  Google Scholar 

  18. Korsmeyer RW, Peppas NA. Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J Polym Sci. 1986;24:409–34.

    CAS  Google Scholar 

  19. Korsmeyer RW, Peppas NA. Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers. J Control Release. 1984;1:89–98.

    Article  CAS  Google Scholar 

  20. Davidson GWR III, Peppas NA. Solute and penetrant diffusion in swellable polymers. V. Relaxation-controlled transport in P(HEMA-co-MMA) copolymers. J Control Release. 1986;3:243–58.

    Article  CAS  Google Scholar 

  21. Lustig SR, Peppas NA. Solute and penetrant diffusion in swellable polymers. VII. A free volume based model with mechanical relaxation. J Appl Polym Sci. 1987;33:533–49.

    Article  CAS  Google Scholar 

  22. Smith MJ, Peppas NA. Effect of the degree of crosslinking on penetrant transport in polystyrene. Polymer. 1985;26:569–74.

    Article  CAS  Google Scholar 

  23. Robert CCR, Buri PA, Peppas NA. Effect of degree of crosslinking on water transport in polymer microparticles. J Appl Polym Sci. 1985;30:301–6.

    Article  CAS  Google Scholar 

  24. Mateo JL, Bosch P, Serrano J, Calvo M. Sorption and diffusion of organic solvents through photo-crosslinked SBS block copolymers. Eur Polym J. 2000;36:1903–10.

    Article  CAS  Google Scholar 

  25. Zhao C, Li J, Jiang Z, Chen C. Measurement of the infinite dilution diffusion coefficients of small molecule solvents in silicone rubber by inverse gas chromatography. Eur Polym J. 2006;42:615–24.

    Article  CAS  Google Scholar 

  26. Flory PJ. Principles of polymer chemistry. New York: Cornell University Press; 1968.

    Google Scholar 

  27. Rubinstein M, Colby RH. Polymer physics. New York: Oxford University Press; 2006.

    Google Scholar 

  28. Krongauz VV, Yohannan RM. Photopolymerization kinetics and monomer diffusion in polymer matrix. Polymer. 1990;31(6):1130–9.

    Article  CAS  Google Scholar 

  29. Krongauz VV, Reddy D. Radio-scintillating probe for monitoring molecular transport in polymers. Polym Commun. 1990;31(1):7–10.

    Google Scholar 

  30. Krongauz VV, Mooney WF III, Schmelzer ER. Interlayer diffusion of small molecules in laminated polymer films. Polymer. 1994;35(5):929–34.

    Article  CAS  Google Scholar 

  31. Krongauz VV, Mooney WF III, Palmer JW, Patricia JJ. New real-time fluorescent probe technique for monitoring diffusion in polymer films. J Appl Polym Sci. 1995;56(9):1077–83.

    Article  CAS  Google Scholar 

  32. Krongauz VV, Chawla CP. Water transport and diffusion in radiation cured coatings and adhesives. RadTech Europe 2001, conference proceedings, October 8–10. 2001; p. 245–252.

  33. Ugur S, Yargi O, Pekcan O. Oxygen diffusion into polystyrene–bentonite films. Appl Clay Sci. 2009;43:447–52.

    Article  CAS  Google Scholar 

  34. Hall DB, Miller RD, Torkelson JM. Molecular probe techniques for studying diffusion and relaxation in thin and ultrathin polymer films. J Polym Sci. 1997;35:2795–802.

    CAS  Google Scholar 

  35. Keatch CJ, Dollimore D. An introduction to thermogravimetry. 2nd ed. London, New York, Rheine: Heyden & Son Ltd; 1975.

    Google Scholar 

  36. Krongauz VV. Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates. Thermochim Acta. 2010;503–504:70–84.

    Article  Google Scholar 

  37. Sperling LH. Introduction to physical polymer science. 4th ed. London: Wiley; 2006.

    Google Scholar 

  38. Nielsen LE. Crosslinking—effect on physical properties of polymers. J Macromol Sci Rev Macromol Chem. 1969;3(1):69–103.

    CAS  Google Scholar 

  39. Katz D, Tobolsky AV. Rubber elasticity in highly cross-linked poly(ethyl acrylate). J Polym Sci A. 1964;2(4):1595–605.

    Google Scholar 

  40. Tobolsky AV, Takahashi D, Katz M, Schaffhauser R. Rubber elasticity in highly cross-linked systems; crosslinked styrene, methyl methacrylate, ethyl acrylates, and octyl acrylates. J Polym Sci A. 1964;2(6):2749–58.

    CAS  Google Scholar 

  41. Bicerano J, Sammler RL, Craig J, Seitz JT. Correlation between glass transition temperature and chain structure for randomly crosslinked high polymers. J Polym Sci B. 1996;34(13):2247–59.

    Article  CAS  Google Scholar 

  42. Crank J. The mathematics of diffusion. 2nd ed. Clarendon Press: Oxford; 1975.

    Google Scholar 

  43. Langmuir J, Schaefer VJ. Rates of evaporation of water through compressed monolayers on water. J Franklin Inst. 1943;235:119–62.

    Article  CAS  Google Scholar 

  44. Archer RJ, La Mer VK. The rate of evaporation of water through fatty acid monolayers. J Phys Chem. 1954;59:200–8.

    Article  Google Scholar 

  45. La Mer VK, Healy TW, Aylmore LAG. The transport of water through monolayers of long-chain n-parafinic alcohols. J Colloid Sci. 1964;19:673–84.

    Article  CAS  Google Scholar 

  46. La Mer VK, Healy TW. Evaporation of water: its retardation by monolayers. Science. 1965;148:36–42.

    Article  CAS  Google Scholar 

  47. Quickenden TI, Barnes GT. Evaporation through monolayers-theoretical treatment of the effect of chain length. J Colloid Interface Sci. 1978;67(3):415–22.

    Article  CAS  Google Scholar 

  48. Barnes GT. Permeation through monolayers. Colloids Surf. 1997;126:149–58.

    Article  CAS  Google Scholar 

  49. Curro JG, Pearson DS, Helfand E. Viscoelasticity of randomly cross-linked polymer networks. Relaxation of dangling chains. Macromolecules. 1985;18:1157–62.

    Article  CAS  Google Scholar 

  50. Krongauz VV, Schmelzer ER, Yohannan RM. Kinetics of anisotropic photopolymerization in polymer matrix. Polymer. 1991;32(9):1654–62.

    Article  CAS  Google Scholar 

  51. Krongauz VV, Schmelzer ER. Peculiarities of anisotropic photopolymerization in films. In: Proceeding of SPIE’s International Symposium on Optical Application in Science and Engineering, Photopolymer Device Physics, Chemistry, and Application II. 1991;1559:354–376.

  52. Krongauz VV, Schmelzer ER. Oxygen effects on anisotropic photopolymerization in polymer matrix. Polymer. 1992;33(9):1893–901.

    Article  CAS  Google Scholar 

  53. Krongauz VV, Legere CC. Morphological changes during anisotropic photopolymerization in films. Polymer. 1993;34(17):3614–9.

    Article  CAS  Google Scholar 

  54. Vorflusev V, Kumar S. Phase-separated composite films for liquid crystal displays. Science. 1999;283(5409):1903–5.

    Article  CAS  Google Scholar 

  55. Wang Q, Park JO, Srinivasarao M, Qiu L, Kumar S. Control of polymer structures in phase-separated liquid crystal-polymer composite systems. Jpn J Appl Phys. 2005;44:3115–20.

    Article  CAS  Google Scholar 

  56. Amsden B. Solute diffusion in hydrogels. An examination of the retardation effect. Polym Gels Netw. 1998;6:13–43.

    Article  CAS  Google Scholar 

  57. Amdsen B. Solute diffusion within hydrogel. Mechanism and models. Macromolecule. 1998;31:8382–95.

    Article  Google Scholar 

  58. Wu Y, Joseph S, Aluru NR. Effect of crosslinking on the diffusion of water, ions and small molecules in hydrogels. J Phys Chem B. 2009;113:3512–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Most helpful discussion with Professor Sergey Vyazovkin, University of Alabama at Birmigham, and his valuable suggestion to consider pre-exponential factors behavior added to the diffusion mechanism discussion and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Krongauz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krongauz, V.V. Diffusion in polymers dependence on crosslink density. J Therm Anal Calorim 102, 435–445 (2010). https://doi.org/10.1007/s10973-010-0922-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0922-6

Keywords

Navigation