Skip to main content
Log in

Time-dependent autohesion

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A study has been conducted to investigate the relationship between polymeric structure and time-dependent autohesion, measured in terms of autohesive fracture energy, G a . Using the method of reduced variables, it was found that G a data as a function of contact time and temperature could be superposed into master curves of temperature-reduced contact times. Autohesion master curves developed in this fashion showed fracture resistance increasing with time along a logarithmic-type curve with monotonically decreasing slope. These data indicate that the generally accepted 1/2 power law dependency for autohesion only applies over a narrow range of contact times. Modelling of the experimental results was accomplished using a first-order kinetic equation derived to account for contact-area formation. Two diffusion-based models also provided good predictions in specific cases, most notably for the effect of molecular weight on time to equilibrium. However, evidence that diffusion is not the rate controlling process included the pronounced effects of contact pressure on autohesion and the identical time-dependent behavior of nondiffusing crosslinked networks when compared with systems containing mobile polymeric chains.

Résumé

On a mené une étude sur la relation liant la structure d'un polymère et de l'auto-adhésion dépendant du temps, mesurée en termes de l'énergie de rupture d'auto-adhésion Ga. En utilisant la méthode des réduites, on trouve que les donées relatives à Ga exprimées en fonction de la durée du contact et de la température, peuvent être superposées à des courbes directrices liant la température et les durées de contact réduites. Les courbes directrices d'auto-adhésion développées par cette voie montrent que la résistance à la rupture augmente avec le temps selon loi de type logarithmique, avec une pente à décroissance régulière. Ces données indiquent que la loi de puissance 1/2 qui est généralement acceptée pour l'auto-adhésion ne s'applique que sur une plage de durées de contact relativement étroite. Pour tenir compte de la formation de surfaces de contact, on a accompli une modélisation des données expérimentales en utilisant une équation cinétique du premier ordre. Deux modèles basés sur la diffusion fournissent également de bonne prédictions pour des cas spécifiques, et plus particulièrement pour traiter le problème de l'effet du poids moléculaire sur la durée pour atteindre un équilibre. Toutefois, il est évident que la diffusion n'est pas le processus contrôlant la vitesse. Ceci transparaît par les effets prononcés de la pression de contact sur l'auto-adhésion, et sur le comportement identique par rapport au temps de réseaux à liaison crousées non sujets à la diffusion et de systèmes comportant des chaînes polymères multiples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Voyutskii, Autohesion and Adhesion of High Polymers, Interscience, New York (1963).

    Google Scholar 

  2. G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 576–595.

    Google Scholar 

  3. S. Wu, Polymer Interface and Adhesion, Dekker, New York (1982).

    Google Scholar 

  4. S.S. Voyutskii and B.V. Shtarkh, Rubber Chemistry and Technology 30 (1957) 548–553.

    Google Scholar 

  5. W.G. Forbes and L.A. McLeod, Transactions of the Institute of the Rubber Industry 34 (1958) 154–184.

    Google Scholar 

  6. K. Jud, H.H. Kausch and J.G. Williams, Journal of Material Science 16 (1981) 204–214.

    Google Scholar 

  7. R.P. Wool and K.M. O'Connor, Journal of Applied Physics 52 (1981) 5953–5963.

    Google Scholar 

  8. R.P. Wool and K.M. O'Connor, Journal of Polymer Science: Polymer Letters Edition 20 (1982) 7–16.

    Google Scholar 

  9. T.Q. Nguyen, H.H. Kausch, H. Jud and M. Dettenmaier, Polymer 23 (1982) 1305–1321.

    Google Scholar 

  10. R.P. Wool, Rubber Chemistry and Technology 57 (1984) 307–319.

    Google Scholar 

  11. H.H. Kausch, D. Petrovska, R.F. Landel and L. Monnerie, Polymer Science and Engineering 27 (1987) 149–154.

    Google Scholar 

  12. S.S. Voyutskii, Rubber Chemistry and Technology 33 (1960) 748–755.

    Google Scholar 

  13. S.S. Voyutskii and V.L. Vakula, Journal of Applied Polymer Science 7 (1963) 475–491.

    Google Scholar 

  14. P.G. de Gennes. Comptes Readu Academy of Sciences (Paris), Series B, 291 (1980) 219–223.

    Google Scholar 

  15. P.G. de Gennes, Journal of Chemical Physics 55 (1971) 572–579.

    Google Scholar 

  16. S. Prager and M. Tirrell, Journal of Chemical Physics 75 (1981) 5194–5198.

    Google Scholar 

  17. S. Prager, D. Adolf and M. Tirrell, Journal of Chemical Physics 78 (1983) 7015–7016.

    Google Scholar 

  18. D. Adolf, M. Tirrell and S. Prager, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 413–427.

    Google Scholar 

  19. Y.H. Kim and R.P. Wool, Macromolecules 16 (1983) 1115–1120.

    Google Scholar 

  20. F.N. Kelley, PhD dissertation, University of Akron (1961).

  21. D.H. Kaelble, in Treatise on Adhesion and Adhesives, R.L. Patrick (ed.), Dekker, New York (1967).

    Google Scholar 

  22. D.H. Kaelble, Journal of Adhesion 1 (1969) 102–123.

    Google Scholar 

  23. D.H. Kaeble, Journal of Macromolecular Science — Reviews in Macromolecular Chemistry C 6 (1971) 85–112.

    Google Scholar 

  24. J.N. Anand, Journal of Adhesion 5 (1973) 265–275.

    Google Scholar 

  25. G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 403–414.

    Google Scholar 

  26. G.R. Hamed, Rubber Chemistry and Technology 55 (1982) 1469–1481.

    Google Scholar 

  27. N.S. Korenevskaya, V.V. Laurent'ev, S.M. Yagnyatinskaya, V.G. Rayevskii and S.S. Voyutskii, Polymer Science USSR 8 (1966) 1372–1377.

    Google Scholar 

  28. J.D. Ferry, Viscoelastic Properties of Polymers, Third Edition, Wiley, New York (1980).

    Google Scholar 

  29. R.W. Fillers and N.M. Tschoegl, Transactions of the Society of Rheology 21 (1977) 51–100.

    Google Scholar 

  30. W.K. Moonan and N.W. Tschoegl, Macromolecules 16 (1983) 55–59.

    Google Scholar 

  31. W.K. Moonan and N.W. Tschoegl, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 623–651.

    Google Scholar 

  32. E.A. Meinecke, Rubber Chemistry and Technology 53 (1980) 1145–1159.

    Google Scholar 

  33. R.S. Rivlin and A.G. Thomas, Journal of Polymer Science 10 (1953) 291–318.

    Google Scholar 

  34. A.N. Gent and A.J. Kinloch, Journal of Polymer Science: Polymer Physics Edition 9 (1971) 659–668.

    Google Scholar 

  35. A.N. Gent, Rubber Chemistry and Technology 47 (1974) 202–212.

    Google Scholar 

  36. E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A 332 (1973) 385–399.

    Google Scholar 

  37. E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A 332 (1973) 401–414.

    Google Scholar 

  38. R.G. Stacer, D.M. Husband, and H.L. Stacer, Rubber Chemistry and Technology 60 (1987) 227–244.

    Google Scholar 

  39. M.L. Williams, R.F. Landel and J.D. Ferry, Journal of the American Chemical Society 77 (1955) 3701–3706.

    Google Scholar 

  40. P.J. Flory, Statistical Mechanics of Chain Molecules, Wiley, New York (1969).

    Google Scholar 

  41. M. Tirrell, Rubber Chemistry and Technology 57 (1984) 523–556.

    Google Scholar 

  42. D.S. Pearson, Rubber Chemistry and Technology 60 (1987) 439–496.

    Google Scholar 

  43. L.F. Plisko, V.V. Laurentyev, V.L. Vakula, and S.S. Voyutskii, Polymer Science USSR 14 (1972) 2501–2506.

    Google Scholar 

  44. R.M. Vasenin, Adhesives Age 8 (1965) 18–29.

    Google Scholar 

  45. J.N. Anand and R.Z. Balwinski, Journal of Adhesion 1 (1969) 24–30.

    Google Scholar 

  46. J.N. Anand and L. Dipsinski, Journal of Adhesion 2 (1970) 16–22.

    Google Scholar 

  47. R.P. Campion, Journal of Adhesion 7 (1974) 1–23.

    Google Scholar 

  48. A.Ya. Malkin, in Experimental Methods of Polymer Physics, A.Ya. Malkin (ed.), Prentice-Hall, Englewood Cliffs, New Jersey (1983).

    Google Scholar 

  49. F. Bueche, Physical Properties of Polymer, Wiley, New York (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacer, R.G., Schreuder-Stacer, H.L. Time-dependent autohesion. Int J Fract 39, 201–216 (1989). https://doi.org/10.1007/BF00047450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047450

Keywords

Navigation