Skip to main content
Log in

High molecular weight of poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) used as carbon fiber precursor: preparation and stabilization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A bifunctional 3-aminocarbonyl-3-butenoic acid methyl ester (ABM) was used to prepare high molecular weight poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) [P(AN-co-ABM)] by suspension polymerization in aqueous medium. The influence of ABM monomer feed ratios on the structure and stabilization of P(AN-co-ABM) was characterized by element analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Based on reactivity ratio calculation, the comonomer ABM possesses greater reactivity than acrylonitrile. The molecular weight of P(AN-co-ABM) in this work is 10 times larger, as compared to the one prepared by solution polymerization; it is the key to producing high-performance carbon fiber. The FTIR, XRD and DSC results illustrate that the stabilization of P(AN-co-ABM) is significantly improved as compared with PAN homopolymer and P(AN-AA-MA), for instance, lower initiation temperature, smaller cyclization activation energy (Ea), broadened exothermic peak and larger stabilization extent, due to the ionic cyclization initiated by ABM, which makes the resultant P(AN-co-ABM) a potential precursor for carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mittal J, Mathur RB, Bahl OP. Post spinning modification of PAN fibres—a review. Carbon. 1997;35(12):1713–21.

    Article  CAS  Google Scholar 

  2. Frank E, Steudle LM, Ingildeev D, Spoerl JM, Buchmeiser MR. ChemInform Abstract: carbon fibers: precursor systems, processing, structure, and properties. Angew Chem. 2014;53(21):5262–98.

    Article  CAS  Google Scholar 

  3. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab. 2007;92(8):1421–32.

    Article  CAS  Google Scholar 

  4. Chand S. Carbon fibers for composites. J Mater Sci. 2000;35(6):1303–13.

    Article  CAS  Google Scholar 

  5. Gupta DC, Agrawal JP, Sharma RC. Effect of comonomers on thermal degradation of polyacrylonitrile. J Appl Polym Sci. 1989;38(2):265–70.

    Article  CAS  Google Scholar 

  6. Gupta AK, Paliwal DK, Bajaj P. Acrylic precursors for carbon fibers. Polym Rev. 1991;31(1):1–89.

    Article  Google Scholar 

  7. Kakida H, Tashiro K, Kobayashi M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Relationship between isothermal dsc thermogram and FT/IR spectral change of an acrylonitrile/methacrylic acid copolymer. Polym J. 1996;28(1):30–4.

    Article  CAS  Google Scholar 

  8. Ju A, Xu H, Ge M. Preparation and thermal properties of poly[acrylonitrile- co -(β -methylhydrogen itaconate)] used as carbon fiber precursor. J Therm Anal Calorim. 2014;115(2):1037–47.

    Article  CAS  Google Scholar 

  9. Devasia R, Nair CPR, Sadhana R, Babu NS, Ninan KN. Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile- co -itaconic acid). J Appl Polym Sci. 2010;100(4):3055–62.

    Article  CAS  Google Scholar 

  10. Godshall D, Rangarajan P, Baird DG, Wilkes GL, Bhanu VA, McGrath JE. Incorporation of methyl acrylate in acrylonitrile based copolymers: effects on melting behavior. Polymer. 2003;44(15):4221–8.

    Article  CAS  Google Scholar 

  11. Gupta A, Harrison IR. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon. 1996;34(11):1427–45.

    Article  CAS  Google Scholar 

  12. Preta IFC, Sakata SK, Garcia G, Zimmermann JP, Galembeck F, Giovedi C. Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions. J Therm Anal Calorim. 2007;87(3):657–9.

    Article  CAS  Google Scholar 

  13. Arbab S, Zeinolebadi A. Quantitative analysis of the effects of comonomers and heating conditions on the stabilization reactions of polyacrylonitrile fibers as carbon fiber precursors. Polym Degrad Stab. 2017;139:107–16.

    Article  CAS  Google Scholar 

  14. Ju A, Guang S, Xu H. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon. 2013;54:323–35.

    Article  CAS  Google Scholar 

  15. Ju A, Luo M, Zhang K, Ge M. Mechanism and kinetics of stabilization reactions of poly(acrylonitrile- co -3-aminocarbonyl-3-butenoic acid methyl ester). J Therm Anal Calorim. 2014;117(1):205–15.

    Article  CAS  Google Scholar 

  16. Ju A, Liu Z, Luo M, Xu H, Ge M. Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor. J Polym Res. 2013;20(12):318.

    Article  CAS  Google Scholar 

  17. Tsai JS, Lin CH. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. J Appl Polym Sci. 1991;42(11):3045–50.

    Article  CAS  Google Scholar 

  18. Ferguson J, Mahapatro B. Pyrolysis studies on polyacrylonitrile fibres: influence of conditions and molecular weight on tensile property changes during the initial stages of pyrolysis. Fibre Sci Technol. 1978;11(1):55–66.

    Article  CAS  Google Scholar 

  19. Morris EA, Weisenberger MC, Abdallah MG, Vautard F, Grappe H, Ozcan S, et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors. Carbon. 2016;101:245–52.

    Article  CAS  Google Scholar 

  20. Morris EA, Weisenberger MC, Bradley SB, Abdallah MG, Mecham SJ, Pisipati P, et al. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer. 2014;55(25):6471–82.

    Article  CAS  Google Scholar 

  21. Gupta VB, Kumar S. The effect of heat setting on the structure and mechanical properties of poly(ethylene terephthalate) fiber. I. Structural changes. J Appl Polym Sci. 1981;26(6):1865–76.

    Article  CAS  Google Scholar 

  22. Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and x-ray diffraction of polyacrylonitrile. J Polym Sci Polym Phys Ed. 1983;21(11):2243–62.

    Article  CAS  Google Scholar 

  23. Morton Fineman SDR. Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci. 1950;5:259–62.

    Article  Google Scholar 

  24. Kelen TTF. Analysis of the linear methods for determining copolymerization reactivity ratios I a new improved linear graphic method. J Macromol Sci Part A Chem. 1975;9:1–9.

    Article  Google Scholar 

  25. Coleman MM, Sivy GT. Fourier transform IR (FTIR) Studies of the degradation of polyacrylonitrile copolymers. Carbon. 1981;19(2):133–5.

    Article  CAS  Google Scholar 

  26. Worzakowska M. Thermal studies on the starch-g-copolymers prepared from two terpene acrylate monomers under oxidative conditions. J Therm Anal Calorim. 2019;137(5):1559–65.

    Article  CAS  Google Scholar 

  27. Qin O, Lu C, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93(8):1415–21.

    Article  CAS  Google Scholar 

  28. Mittal J, Bahl OP, Mathur RB, Sandle NK. IR studies of PAN fibres thermally stabilized at elevated temperatures. Carbon. 1994;32(6):1133–6.

    Article  CAS  Google Scholar 

  29. Santhana Krishnan G, Murali N, Jafar Ahamed A. Structural transformation, thermal endurance, and identification of evolved gases during heat treatment processes of carbon fiber polymer precursors focusing on the stereoregularity. J Therm Anal Calorim. 2017;129(2):821–32.

    Article  CAS  Google Scholar 

  30. Zhang W, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon. 2003;41(14):2805–12.

    Article  CAS  Google Scholar 

  31. Huang J, Ouyang Q, Li M, Heng F, Ma H, Chen Y. Thermal behavior and thermal stabilization of guanidine hydrochloride-modified acrylic fiber for preparation of low-cost carbon fiber. J Therm Anal Calorim. 2018;136(6):2195–203.

    Article  CAS  Google Scholar 

  32. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PZ. A new method for the evaluation of stabilization index of polyacrylonitrile fibers. Mater Lett. 2007;61(11):2292–4.

    Article  CAS  Google Scholar 

  33. Mathur RB, Bahl OP, Mittal J, Nagpal KC. Structure of thermally stabilized PAN fibers. Carbon. 1991;29(7):1059–61.

    Article  Google Scholar 

  34. Furushima Y, Nakada M, Takahashi H, Ishikiriyama K. Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer. 2014;55(13):3075–81.

    Article  CAS  Google Scholar 

  35. Liu H, Zhang S, Yang J, Ji M, Yu J, Wang M, et al. Preparation, stabilization and carbonization of a novel polyacrylonitrile-based carbon fiber precursor. Polym (Basel). 2019;11(7):1150.

    Article  CAS  Google Scholar 

  36. Szepcsik B, Pukánszky B. Separation and kinetic analysis of the thermo-oxidative reactions of polyacrylonitrile upon heat treatment. J Therm Anal Calorim. 2018;133(3):1371–8.

    Article  CAS  Google Scholar 

  37. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  38. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work from National Natural Science Foundation of China (No. 51503086), Natural Science Foundation of Jiangsu Province (No. BK20140159), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (17M1060121), The Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (KLET1406) and the Fundamental Research Funds for the Central Universities (No. 17D110620) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, A., Chen, H., Hou, S. et al. High molecular weight of poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) used as carbon fiber precursor: preparation and stabilization. J Therm Anal Calorim 140, 2687–2699 (2020). https://doi.org/10.1007/s10973-020-09434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09434-z

Keywords

Navigation