Skip to main content
Log in

Preparation and thermal properties of poly[acrylonitrile-co-(β-methylhydrogen itaconate)] used as carbon fiber precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to replace terpolymer with bipolymer, a bifunctional comonomer β-methylhydrogen itaconate (MHI) containing carboxyl group and ester group was synthesized to prepare poly[acrylonitrile-co-(β-methylhydrogen itaconate)] [P(AN-co-MHI)] bipolymers used as carbon fiber precursor for improving the stabilization and spinnability at the same time. The P(AN-co-MHI) bipolymers with different monomer feed ratios were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results show that both the polymerization conversion and molecular mass of P(AN-co-MHI) reduce with the increasing MHI amounts in the feed due to the larger molecular volume of MHI than acrylonitrile (AN). The monomer reactivity ratios were calculated by Fineman–Ross and Kelen–Tüdõs methods, the results show good agreement and MHI possesses higher reactivity than AN. Two parameters \( E_{\text{s}} = A_{{1,629\,{\text{cm}}^{ - 1} }} /A_{{2,244\,{\text{cm}}^{ - 1} }} \) and \( SI = (I_{0} - I_{\text{S}} )/I_{0} \) were defined to evaluate the extent of stabilization, and the activation energy (E a) of the cyclization was calculated by Kissinger method and Ozawa method. The FTIR, XRD, and DSC results show that P(AN-co-MHI) bipolymers exhibit significantly improved stabilization characteristics than PAN homopolymer, such as larger extent of stabilization, lower initiation temperature, and smaller E a of cyclization, which is attributed to the ionic initiation by MHI comonomer and it is beneficial to preparing high-performance carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shokuhfar A, Sedghi A, Eslami FR. Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres. Mater Sci Tech. 2006;22:1235–59.

    Article  CAS  Google Scholar 

  2. Paris O, Loidl D, Peterlik H. Texture of PAN- and pitch-based carbon fibers. Carbon. 2002;40:551–5.

    Article  CAS  Google Scholar 

  3. Tan WC, Othman R, Matsumoto A, Yeoh FY. The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre (ACF) derived from oil palm empty fruit bunch (EFB) fibre. J Therm Anal Calorim. 2012;108(3):1025–31.

    Article  CAS  Google Scholar 

  4. Gupta AK, Paliwal DK, Bajaj P. Acrylic precursors for carbon fibers. J Appl Polym Sci. 1996;59:1819–26.

    Article  CAS  Google Scholar 

  5. Qin XH. Structure and property of electrospinning PAN nanofibers by different preoxidation temperature. J Therm Anal Calorim. 2010;99(2):571–5.

    Article  CAS  Google Scholar 

  6. Burkanudeen A, Krishnan GS, Murali N. Thermal behavior of carbon fiber precursor polymers with different stereoregularities. J Therm Anal Calorim. 2013;112(3):1261–8.

    Article  CAS  Google Scholar 

  7. Bahrami SH, Bajaj P, Sen K. Effect of coagulation conditions on properties of poly(acrylonitrile–carboxylic acid) fibers. J Appl Polym Sci. 2003;89:1825–37.

    Article  CAS  Google Scholar 

  8. Liu JJ, Ge HY, Wang CG. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. J Appl Polym Sci. 2006;102:2175–9.

    Article  CAS  Google Scholar 

  9. Devasia R, Reghunadhan Nair CP, Sadhana R, Babu NS, Ninan KN. Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid). J Appl Polym Sci. 2006;100:3055–62.

    Article  CAS  Google Scholar 

  10. Ouyang Q, Cheng L, Wang HJ, Li KX. DSC study of stabilization reactions in poly(acrylo-nitrile-co-itaconic acid) with peak-resolving method. J Therm Anal Calorim. 2008;94(1):85–8.

    Article  CAS  Google Scholar 

  11. Devasia R, Reghunadhan Nair CP, Sivadasan P, Catherine BK, Ninan KN. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: an isothermal differential scanning calorimetry kinetic study. J Appl Polym Sci. 2006;88:915–20.

    Article  Google Scholar 

  12. Tsai JS, Lin CH. Polyacrylonitrile precursors by copolymer and additive with itaconic acid. J Mater Sci Lett. 1990;9:869–71.

    Article  CAS  Google Scholar 

  13. Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers-VI. Acrylonitrile copolymers containing carboxylic acid and amide structures. Eur Polym J. 1972;8:257–69.

    Article  CAS  Google Scholar 

  14. Coleman MM, Sivy GT. Fourier transform ir studies of the degradation of polyacrylonitrile copolymers-I: introduction and comparative rates of the degradation of three copolymers below 200 C and under reduced pressure. Carbon. 1981;19:133–5.

    Article  CAS  Google Scholar 

  15. Catta P, Sakata S, Garcia G, Zimmermann JP, Galembeck F, Galembeck F, Giovedi G. Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions. J Therm Anal Calorim. 2007;87(3):657–9.

    Article  Google Scholar 

  16. Sen K, Bajaj P, Speekumar TV. Thermal behavior of drawn acrylic fibers. J Polym Sci Part B. 2003;41:2949–58.

    Article  CAS  Google Scholar 

  17. Chen GL, Ju AQ, Xu HY, Pan D. Preparation and thermal properties of copolymers of acrylonitrile and monomethyl itaconate for carbon fiber. Polym Mater Sci Eng. 2010;26:146–8.

    CAS  Google Scholar 

  18. Ju AQ, Guang SY, Xu HY. Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-β-methylhydrogen itaconate). J Mater Res. 2012;27(20):2668–76.

    Article  CAS  Google Scholar 

  19. Devasia R, Reghunadhan Nair CP, Ninan KN. High char-yielding poly[acrylonitrile-co-(itaconic acid)-co-(methyl acrylate)]: synthesis and properties. Polym Int. 2005;54:1110–8.

    Article  CAS  Google Scholar 

  20. Chen H, Liang Y, Wang CQ. Kinetics of copolymerization of acrylonitrile with ammonium itaconate in a H2O/dimethyl formamide mixture. J Appl Polym Sci. 2004;94:1151–5.

    Article  CAS  Google Scholar 

  21. Gupta VB, Kumar S. The effect of heat setting on the structure and mechanical properties of poly(ethylene terephthalate) fiber. I. Structural changes. J Appl Polym Sci. 1981;26:1865–76.

    Article  CAS  Google Scholar 

  22. Fineman M. Ross SD Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci. 1950;5:259–62.

    Article  CAS  Google Scholar 

  23. Kelen T, Tudos F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. New improved linear graphic method. J Macromol Sci Chem. 1975;9:1–9.

    Article  Google Scholar 

  24. Zhao YQ, Wang CG, Wang YX, Zhu B. Aqueous deposited copolymerization of acrylonitrile and itaconic acid. J Appl Polym Sci. 2009;111:3163–9.

    Article  CAS  Google Scholar 

  25. Minagawa M, Miyano K, Takahashi M, Yoshii F. Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile). Macromolecules. 1988;21:2387–92.

    Article  CAS  Google Scholar 

  26. Mittal J, Bahl OP, Mathur RB, Sandle NK. IR studies of PAN fibers thermally stabilized at elevated temperatures. Carbon. 1994;32:1133–40.

    Article  CAS  Google Scholar 

  27. Patron L, Bastianelli U. Side reactions of acrylonitrile radical polymerization. Appl Polym Symp. 1974;25:105–12.

    CAS  Google Scholar 

  28. Usami T, Itoh T, Ohtani H, Tsuge S. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy. Macromolecules. 1990;23:2460–5.

    Article  CAS  Google Scholar 

  29. Ouyang Q, Cheng L, Wang HJ, Li KX. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93:1415–22.

    Article  CAS  Google Scholar 

  30. Watt W. Carbon work at the royal aircraft establishment. Carbon. 1972;10:121–43.

    Article  CAS  Google Scholar 

  31. Bahl OP, Manocha LM. Characterization of oxidised pan fibres. Carbon. 1974;12:417–23.

    Article  CAS  Google Scholar 

  32. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PA. A new method for the evaluation of stabilization index of polyacrylonitrile fibers. Mater Lett. 2007;61:2292–7.

    Article  CAS  Google Scholar 

  33. Bzell JP, Dumbleton JH. Changes in the structure of wet-spun acrylic fibers during processing. Text Res J. 1971;41:196–203.

    Article  Google Scholar 

  34. Lai CL, Zhong GJ, Yue ZR, Gui C, Zhang LF, Vakili A, Wang Y, Zhu L, Liu J, Fong H. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer. 2001;52:519–28.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work from National Science Foundation of China (No 20974018) and Important National Research Program “863” (No 2012AA030313-1) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqi Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, A., Xu, H. & Ge, M. Preparation and thermal properties of poly[acrylonitrile-co-(β-methylhydrogen itaconate)] used as carbon fiber precursor. J Therm Anal Calorim 115, 1037–1047 (2014). https://doi.org/10.1007/s10973-013-3534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3534-0

Keywords

Navigation