Skip to main content
Log in

Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A bifunctional comonomer 3-aminocarbonyl-3-butenoic acid methyl ester (ABM) was designed and synthesized to prepare poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) [P(AN-co-ABM)] copolymer which can be used as carbon fiber precursor instead of poly(acrylonitrile–acrylamide–methyl acrylate) [P(AN–AM–MA)] terpolymer. The stabilization mechanism and structural evolution of P(AN-co-ABM) and P(AN–AM–MA) during stabilization were studied by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetry. The activation energy (E a) of the cyclization reactions was calculated by Kissinger method and Ozawa method. The results show that the stabilization of P(AN-co-ABM) has been remarkably improved by ABM compared with P(AN–AM–MA) terpolymer, such as lower initiation temperature, broadened exothermic peak, larger extent of stabilization, and smaller E a of cyclization, which is attributed to the initiation of ABM through ionic mechanism. Moreover, the spinnability of P(AN-co-ABM) is also improved by ABM due to the lubrication of ester groups in ABM. This study clearly shows that P(AN-co-ABM) copolymer is a better material used as carbon fiber precursor than P(AN–AM–MA) terpolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Shokuhfarl A, Sedghi A, Eslami FR. Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres. Mater Sci Technol. 2006;22(10):1235–9.

    Article  Google Scholar 

  2. Ouyang Q, Wang HJ, Cheng L, Sun YH. Effect of boric acid on the stabilization of poly(acrylonitrile-co-itaconic acid). J Polym Res. 2007;14:497–503.

    Article  CAS  Google Scholar 

  3. Tan WC, Othman R, Matsumoto A, Yeoh FY. The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre (ACF) derived from oil palm empty fruit bunch (EFB) fibre. J Therm Anal Calorim. 2012;108(3):1025–31.

    Article  CAS  Google Scholar 

  4. Liu J, Yue ZR, Fong H. Continuous nanoscale carbon fibers with superior mechanical strength. Small. 2009;5(5):536–42.

    Article  CAS  Google Scholar 

  5. Yan X, Jie L, Liang JY. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polym Degrad Stab. 2013;98:219–29.

    Article  Google Scholar 

  6. Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon. 1996;34:941–56.

    Article  CAS  Google Scholar 

  7. Qin XH. Structure and property of electrospinning PAN nanofibers by different preoxidation temperature. J Therm Anal Calorim. 2010;99(2):571–5.

    Article  CAS  Google Scholar 

  8. Burkanudeen A, Krishnan GS, Murali N. Thermal behavior of carbon fiber precursor polymers with different stereoregularities. J Therm Anal Calorim. 2013;112(3):1261–8.

    Article  CAS  Google Scholar 

  9. Li W, Long DH, Miyawaki J, Qiao WM, Ling LC. Structural features of polyacrylonitrile-based carbon fibers. J Mater Sci. 2012;47:919–28.

    Article  Google Scholar 

  10. Zhang WX, Liu J, Wu G. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon. 2003;41(14):941–56.

    Google Scholar 

  11. Bahrami SH, Bajaj P, Sen K. Effect of coagulation conditions on properties of poly(acrylonitrile–carboxylic acid) fibers. J Appl Polym Sci. 2003;89(7):1825–37.

    Article  CAS  Google Scholar 

  12. Bajaj P, Screekumar TV, Sen K. Structure development during dry–jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. J Appl Polym Sci. 2002;86(3):773–87.

    Article  CAS  Google Scholar 

  13. Liu JJ, Ge HY, Wang CG. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. J Appl Polym Sci. 2006;102:2175–9.

    Article  CAS  Google Scholar 

  14. Devasia R, Reghunadhan NCP, Sadhana R, Babu NS, Ninan KN. Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid). J Appl Polym Sci. 2006;100:3055–62.

    Article  CAS  Google Scholar 

  15. Ouyang Q, Cheng L, Wang HJ, Li KX. DSC study of stabilization reactions in poly(acrylo-nitrile-co-itaconic acid) with peak-resolving method. J Therm Anal Calorim. 2008;94(1):85–8.

    Article  CAS  Google Scholar 

  16. Bajaj P, Screekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer. 2001;42:1707–18.

    Article  CAS  Google Scholar 

  17. Ouyang Q, Cheng L, Wang HJ, Li KX. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93:1415–21.

    Article  CAS  Google Scholar 

  18. Ju AQ, Guang SY, Xu HY. Molecular design and stabilization mechanism of acrylonitrile bipolymer. J Appl Polym Sci. 2013;129(6):3255–64.

    Article  CAS  Google Scholar 

  19. Devasia R, Reghunadhan NCP, Sivadasan P, Catherine BK, Ninan KN. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: an isothermal differential scanning calorimetry kinetic study. J Appl Polym Sci. 2003;88:915–20.

    Article  CAS  Google Scholar 

  20. Tan LJ, Chen HF, Pan D, Pan N. Investigating the spinnability in the dry–jet wet spinning of PAN precursor fiber. J Appl Polym Sci. 2008;110:1997–2000.

    Article  CAS  Google Scholar 

  21. Bajaj P, Screekumar TV, Sen K. Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids. J Appl Polym Sci. 2001;79(9):1640–52.

    Article  CAS  Google Scholar 

  22. Ju AQ, Guang SY, Xu HY. Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-β-methylhydrogen itaconate). J Met Res. 2012;27(20):2668–76.

    Article  CAS  Google Scholar 

  23. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab. 2007;92:1421–32.

    Article  CAS  Google Scholar 

  24. Watt W. Carbon work at the royal aircraft establishment. Carbon. 1972;10:121–43.

    Article  CAS  Google Scholar 

  25. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PZ. A new method for the evaluation of stabilization index of polyacrylonitrile fibers. Mater Lett. 2007;61:2292–4.

    Article  CAS  Google Scholar 

  26. Bell JP, Dumbleton JH. Influence of spinning dope Additives and spin bath temperature on the structure and physical properties of acrylic fibers. Text Res J. 1971;41:196–203.

    Article  CAS  Google Scholar 

  27. Fitzer E, Frohs W, Heine M. Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers. Carbon. 1986;24(4):387–95.

    Article  CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Jain MK, Abhiraman AS. Conversion of acrylonitrile-based precursors to carbon fibers. Part 2. Precursor morphology and thermooxidative stabilization. J Mater Sci. 1987;22:278–300.

    Article  CAS  Google Scholar 

  31. Chiu H, Wang J. Characterization of the rheological behavior of UHMWPE gels using parallel plate rheometry. J Appl Polym Sci. 1998;70:1009–16.

    Article  CAS  Google Scholar 

  32. Zhou Z, Wu X, Wang M. Rheological properties of thermotropic liquid crystalline aromatic copolyesters. Polym Eng Sci. 1988;28:136–42.

    Article  CAS  Google Scholar 

  33. Wang Y, Wu DC. Extrusion, fiber formation and characterization of thermotropic liquid crystalline copolyesters. J Appl Polym Sci. 1997;66:1389–97.

    Article  CAS  Google Scholar 

  34. Wu XP, Zhang XL, Sheng LH, Lu CX, He F, Ling LC. Research on spinnability of polyacrylonitrile solution for carbon fibers. Hi-Tech Fiber Appl. 2007;32(6):21–4.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work from Important National Research Program “863” (number 2012AA030313-1) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqi Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, A., Luo, M., Zhang, K. et al. Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester). J Therm Anal Calorim 117, 205–215 (2014). https://doi.org/10.1007/s10973-014-3687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3687-5

Keywords

Navigation