Skip to main content
Log in

Structural transformation, thermal endurance, and identification of evolved gases during heat treatment processes of carbon fiber polymer precursors focusing on the stereoregularity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Structural transformations of polyacrylonitrile microstructure with varying degrees of stereoregularity during the thermal-oxidative degradation and pyrolysis reactions were investigated employing coupled thermal techniques namely pyrolysis–gas chromatography–mass spectrometry, evolved gas analysis–mass spectrometry, and thermal gravimetric analyzer-FT infrared spectrometry (TG-FTIR) in the temperature range of 200–600 °C. More number of intense peaks with large ionic abundances in the thermal curves and pyrograms indicate that atactic-rich polyacrylonitrile copolymers undergo thermal cleavage, fragmentation and cyclization reactions more readily than isotactic polyacrylonitrile. The mass loss accompanying the thermal reactions was accounted for the evolution of hydrogen cyanide, ammonia, and homologous of alkyl nitrile having molar mass between 47 and 224 m/z; their most probable structures were identified. Thermal analysis results confirm that nitrile cyclization reactions proceed preferentially at isotactic triads leading to a steady and stable thermal-oxidative degradation reactions as compared to atactic-rich polyacrylonitrile. The simultaneous TG-FTIR results of evolved gas analysis also validate the pyrolysis experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Inui S. Present status and future of PAN based carbon fibre. In; Twenty-eighth seminar on composites, Japan carbon fibre manufacturers association, Tokyo, Japan, 2015; Feb 25.

  2. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita K, Ogihara N, Nakamura K, Ishigaki N, Kato H, Haniu H, Taruta S, Kim YA. Endo M (2011) Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev. 2011;40:3824–34.

    Article  CAS  Google Scholar 

  3. Frank O, Tsoukleri M, Papagelis RK, Parthenios J, Ferrari AC, Geim A, Novoselov KS, Galiotis C. Development of universal stress tensor for graphenes and carbon fibres. Nat Commun. 2011;2:255–61.

    Article  Google Scholar 

  4. National historic chemical landmark programme, American Chemical Society, High performance carbon fibers, 2003; Sept 17.

  5. Makoto E. Carbon fibre. Sen’I Gakkaishi (Fibre Ind). 2014;70:508–11.

    Article  Google Scholar 

  6. Frank E, Steudle ML, Ingildeev D, Spcrl JM, Buckmeiser MR. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed. 2014;53:5262–98.

    Article  CAS  Google Scholar 

  7. Donnet JB, Bansal RC, editors. Carbon fibers. New York: Marcel Dekker Inc; 1998.

    Google Scholar 

  8. Arai Y. Pitch based carbon fiber. Tanso. 2010;241:15–21.

    Article  CAS  Google Scholar 

  9. Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev. 2004;104:4463–92.

    Article  CAS  Google Scholar 

  10. Committee on high-performance structural fibers for advanced composites. High-performance structural fibers for advanced polymer matrix composites. Washington: National Academic Press; 2005.

    Google Scholar 

  11. Daisuke K. Carbon fiber. Sen’I Gakkaishi. 2010;66:184.

    Google Scholar 

  12. Hiramatsu T. Tanso Sen’I no hon. Tokyo: Nikkan Publishers; 2012.

    Google Scholar 

  13. Hiromi A, Toru K. Polyacrylonitrile-based carbon fiber. Tanso. 2007;227:115.

    Google Scholar 

  14. Santhana Krishnan G. Pyrolysis and thermal stability of carbon fiber polymer precursors with different microstructures. In: Naskar AK, Hoffman WP, editors. Polymer derived carbon, ACS Sym Ser 1173. Washington: American Chemical Society; 2014. p. 169–87.

    Google Scholar 

  15. Fitzer E. Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon. 1989;2:621–45.

    Article  Google Scholar 

  16. Usami T, Itoh T, Ohtani H, Tsuge S. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state 13C nuclear magnetic resonance, and fourier transform infrared spectroscopy. Macromolecules. 1990;23:2460–5.

    Article  CAS  Google Scholar 

  17. Santhana Krishnan G, Thomas P, Murali N. Synthesis, characterization, and thermo mechanical properties of poly(acrylonitrile-co-2,3-dimethyl-1,3-butadiene-co-itaconic acid) as carbon fibre polymer precursors. RSC Adv. 2016;6:6182–90.

    Article  Google Scholar 

  18. Gupta AK, Paliwal DK, Bajaj P. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Macromol Sci Rev Macromol Chem Phys. 1991;1:301–10.

    Google Scholar 

  19. Yan X, Zhou W, Zhao X. Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions. J Therm Anal Calorim. 2016;124:719–28.

    Article  CAS  Google Scholar 

  20. Minnagawa M. An anomalous tacticity-crystallinity relationship: a WAXD study of stereoregular isotactic poly(acrylonitrile) powder prepared by urea clathrate polymerization. Macromolecules. 2001;34:3679–83.

    Article  Google Scholar 

  21. Burkanudeen A, Santhana Krishnan G, Murali N. Thermal behavior of carbon fiber precursor polymers with different stereoregularities. J Therm Anal Calorim. 2013;112:1261–8.

    Article  CAS  Google Scholar 

  22. Shimizu K. Recent progress in carbon fibers. Kobunshi. 1993;42(480–48):2.

    Google Scholar 

  23. Okamoto S, Ito A. Effects of nitrogen atoms on mechanical properties of graphenes by molecular dynamics simulations. Eng Lett. 2012;20:169–75.

    CAS  Google Scholar 

  24. Minnagawa M, Onuma H, Ogita T, Uchida H. Pyrolysis Gas chromatographic analysis of polyacrylonitril. J Appl Polym Sci. 2001;79:473–8.

    Article  Google Scholar 

  25. Zhang WX, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon. 2003;41:2805–12.

    Article  CAS  Google Scholar 

  26. Sumida A, Matsui J. Status and development of reinforcement fibres. Concr J. 1991;29(11):48–55.

    Article  Google Scholar 

  27. Takuji S. Carbon fibres and their long term performance. J High Press Inst Jpn. 1997;35(3):125–32.

    Google Scholar 

  28. Santhana Krishnan G, Burkanudeen A, Murali N. Facile synthesis of stereoregular carbon fiber precursor polymers by template assisted solid phase polymerization. eXPRESS Polym Lett. 2012;6:729–73.

    Article  CAS  Google Scholar 

  29. Tomoko I, Yuhei M. Method for producing polyacrylonitrile based fiber and method for producing carbon fiber. JP 2011-42893; 2011.

  30. Sho T, Koichi S. Precursor for carbon fiber, method for producing the same. JP 2001-288613A; 2001.

  31. Chuichi W. Development of analytical Py-GC system of polymericmaterials. Kobunshi. 1994;43:110–1.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Council of Scientific and Industrial Research (CSIR), New Delhi, under Supra Institutional Project (SIP-IFCAP-04) is gratefully acknowledged. Authors are thankful to Tetsuro Yuzawa, Shiono, Frontier laboratories Ltd., Fukushima, Japan, for their thermal analysis support extended during this investigation. Authors thank the Director, CSIR-National Aerospace Laboratories, Bangalore, for his support and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Santhana Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhana Krishnan, G., Murali, N. & Jafar Ahamed, A. Structural transformation, thermal endurance, and identification of evolved gases during heat treatment processes of carbon fiber polymer precursors focusing on the stereoregularity. J Therm Anal Calorim 129, 821–832 (2017). https://doi.org/10.1007/s10973-017-6190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6190-y

Keywords

Navigation