Skip to main content
Log in

Monitoring minor over-heating/cooling temperature based on the temperature memory effect in shape memory materials via DSC

A brief review of the recent progress

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature memory effect (TME) has been reported as another interesting feature of many shape memory materials (SMMs). In this paper, we briefly review the recent progress in monitoring minor over-heating/cooling for random thermal fluctuation based on the TME via differential scanning calorimeter test. Two typical SMMs, namely shape memory alloy and shape memory polymer, are investigated. Two methods, namely the turning point method and enthalpy method are discussed together with their underlying mechanisms based on the experimental results. While the enthalpy method has the advantage of far more less number of pre-experiment, a systematical investigation is still required to confirm its potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from [35] with permission

Fig. 3

Reproduced from [31] with permission

Fig. 4

Reproduced from [36] with permission

Fig. 5
Fig. 6

Reproduced from [30] with permission

Fig. 7

Reproduced from [36] with permission

Fig. 8

Reproduced from [36] with permission

Fig. 9

Reproduced from [39] with permission

Fig. 10

Reproduced from [39] with permission

Fig. 11

Reproduced from [43] with permission

Fig. 12

Reproduced from [43] with permission

Fig. 13
Fig. 14

Reproduced from [43] with permission

Fig. 15

Reproduced from [43] with permission

Fig. 16
Fig. 17

Reproduced from [44] with permission

Fig. 18

Reproduced from [44] with permission

Fig. 19

Reproduced from [44] with permission

Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM, editors. Shape memory materials. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  2. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials. Mater Today. 2010;13(7–8):54–61.

    Article  CAS  Google Scholar 

  3. Wei ZG, Sandstrom R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J Mater Sci. 1998;33(15):3743–62.

    Article  CAS  Google Scholar 

  4. Weiss RA, Izzo E, Mandelbaum S. New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules. 2008;41(9):2978–80. https://doi.org/10.1021/ma8001774.

    Article  CAS  Google Scholar 

  5. Zhou Y, Huang WM, Zhao Y, Ding Z, Li Y, Tor SB, et al. Memory phenomenon in a lanthanum based bulk metallic glass. J Alloys Compd. 2016;672:131–6. https://doi.org/10.1016/j.jallcom.2016.02.114.

    Article  CAS  Google Scholar 

  6. Chaunier L, Lourdin D. The shape memory of starch. Starch-Starke. 2009;61(2):116–8. https://doi.org/10.1002/star.200800074.

    Article  CAS  Google Scholar 

  7. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577–640.

    Article  CAS  Google Scholar 

  8. Wei ZG, Sandström R, Miyazaki S. Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites. J Mater Sci. 1998;33(15):3763–83.

    Article  CAS  Google Scholar 

  9. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, et al. Shape and temperature memory of nanocomposites with broadened glass transition. Science. 2007;318(5854):1294–6. https://doi.org/10.1126/science.1145593.

    Article  CAS  PubMed  Google Scholar 

  10. Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH, et al. Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly (ethylene glycol)(PEG) hydrogel. Acc Chem Res. 2017;50(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  11. Osada Y, Gong JP. Stimuli-responsive polymer gels and their application to chemomechanical systems. Prog Polym Sci. 1993;18(2):187–226. https://doi.org/10.1016/0079-6700(93)90025-8.

    Article  CAS  Google Scholar 

  12. Lendlein A. Shape-memory polymers. Berlin: Springer; 2010.

    Book  Google Scholar 

  13. Funakubo H, editor. Shape memory alloys. New York: Gordon and Breach Science Publishers; 1987.

    Google Scholar 

  14. Miyazaki S, Fu YQ, Huang WM. Thin film shape memory alloys: fundamentals and device applications. New York: Cambridge University Press; 2009.

    Book  Google Scholar 

  15. Razzaq MY, Behl M, Lendlein A. Magnetic memory effect of nanocomposites. Adv Funct Mater. 2012;22(1):184–91. https://doi.org/10.1002/adfm.201101590.

    Article  CAS  Google Scholar 

  16. Kumar B, Hu J, Pan N. Memory bandage for functional compression management for venous ulcers. Fibers. 2016;4(1):10.

    Article  CAS  Google Scholar 

  17. Kratz K, Voigt U, Lendlein A. Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv Funct Mater. 2012;22(14):3057–65. https://doi.org/10.1002/adfm.201200211.

    Article  CAS  Google Scholar 

  18. Behl M, Kratz K, Noechel U, Sauter T, Lendlein A. Temperature-memory polymer actuators. Proc Natl Acad Sci U S A. 2013;110(31):12555–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Airoldi G, Riva G. Step-wise stimulated martensitic transformations. In: Key engineering materials. Zurich: Trans Tech Publications; 1991. pp. 5–16.

    Google Scholar 

  20. Xie T, Page KA, Eastman SA. Strain-based temperature memory effect for nafion and its molecular origins. Adv Funct Mater. 2011;21(11):2057–66.

    Article  CAS  Google Scholar 

  21. Airoldi G, Corsi A, Riva G. Micromemory effects in shape memory alloys. Nuovo Cimento D. 1993;15(2):365–74.

    Article  Google Scholar 

  22. Airoldi G, Corsi A, Riva G. Step-wise martensite to austenite reversible transformation stimulated by temperature or stress: a comparison in NiTi alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process. 1998;241(1–2):233–40.

    Article  Google Scholar 

  23. Riva G, Airoldi G, Besseghini S. The step-wise martensite to austenite reversible transformation. Meccanica. 1995;30(5):495–503. https://doi.org/10.1007/bf01557081.

    Article  Google Scholar 

  24. Yildiz K, Kok M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J Therm Anal Calorim. 2014;115(2):1509–14.

    Article  CAS  Google Scholar 

  25. Aydogdu Y, Turabi A, Aydogdu A, Kok M, Yakinci Z, Karaca H. The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J Therm Anal Calorim. 2016;126(2):399–406.

    Article  CAS  Google Scholar 

  26. Airoldi G, Riva G, Rivolta B, Vanelli M. DSC calibration in the study of shape memory alloys. J Therm Anal Calorim. 1994;42(4):781–91.

    Article  CAS  Google Scholar 

  27. Zheng YJ, Cui LS, Schrooten J. Temperature memory effect of a nickel–titanium shape memory alloy. Appl Phys Lett. 2004;84(1):31–3. https://doi.org/10.1063/1.1637958.

    Article  CAS  Google Scholar 

  28. He XM, Rong LJ, Yan DS, Li YY. Temperature memory effect of Ni47Ti44Nb9 wide hysteresis shape memory alloy. Scr Mater. 2005;53(12):1411–5. https://doi.org/10.1016/j.scriptamat.2005.08.022.

    Article  CAS  Google Scholar 

  29. Wang ZG, Zu XT, Fu YQ, Wang LM. Temperature memory effect in TiNi-based shape memory alloys. Thermochim Acta. 2005;428(1–2):199–205. https://doi.org/10.1016/j.tca.2004.11.018.

    Article  CAS  Google Scholar 

  30. Sun L, Huang WM, Cheah JY. The temperature memory effect and the influence of thermo-mechanical cycling in shape memory alloys. Smart Mater Struct. 2010;19(5):055005. https://doi.org/10.1088/0964-1726/19/5/055005.

    Article  CAS  Google Scholar 

  31. Liu N, Huang WM. DSC study on temperature memory effect of NiTi shape memory alloy. Trans Nonferr Metal Soc. 2006;16:S37–41.

    Article  Google Scholar 

  32. Liu N, Huang WM. Comments on “Incomplete transformation induced multiple-step transformation in TiNi shape memory alloys” [Scripta Mater 2005;53:335]. Scr Mater. 2006;55(5):493–5. https://doi.org/10.1016/j.scriptamat.2006.05.026.

    Article  CAS  Google Scholar 

  33. An L, Huang WM. Transformation characteristics of shape memory alloys in a thermal cycle. Mater Sci Eng A Struct. 2006;420(1–2):220–7. https://doi.org/10.1016/j.msea.2006.01.062.

    Article  CAS  Google Scholar 

  34. Nurveren K, Akdogan A, Huang WM. Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys. J Mater Process Technol. 2008;196(1–3):129–34. https://doi.org/10.1016/j.jmatprotec.2007.05.015.

    Article  CAS  Google Scholar 

  35. Yang WG, Lu HB, Huang WM, Qi HJ, Wu XL, Sun KY. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers. 2014;6(8):2287–308. https://doi.org/10.3390/polym6082287.

    Article  CAS  Google Scholar 

  36. Tang C, Wang TX, Huang WM, Sun L, Gao XY. Temperature sensors based on the temperature memory effect in shape memory alloys to check minor over-heating. Sens Actuators A Phys. 2016;238:337–43. https://doi.org/10.1016/j.sna.2015.11.033.

    Article  CAS  Google Scholar 

  37. Krishnan M. New observations on the thermal arrest memory effect in Ni–Ti alloys. Scr Mater. 2005;53(7):875–9.

    Article  CAS  Google Scholar 

  38. Zhu JJ, Huang WM, Liew KM. Deformation energy in martensitic transformation. J Phys IV. 2003;112:179–82.

    CAS  Google Scholar 

  39. Zhou M, Huang W, Meng X. Temperature memory effect in a magnetic shape memory alloy for monitoring of minor over-cooling. Scr Mater. 2017;127:41–4.

    Article  CAS  Google Scholar 

  40. Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464(7286):267–70. https://doi.org/10.1038/Nature08863.

    Article  CAS  PubMed  Google Scholar 

  41. Sun L, Huang WM. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter. 2010;6(18):4403–6. https://doi.org/10.1039/c0sm00236d.

    Article  CAS  Google Scholar 

  42. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, et al. Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res. 2012;19(9):9952. https://doi.org/10.1007/s10965-012-9952-z.

    Article  CAS  Google Scholar 

  43. Wang TX, Huang WM, Xiao R, Lu HB, Kang SF. Temperature memory effect and its stability revealed via differential scanning calorimetry in ethylene–vinyl acetate (EVA) within glass transition range. J Polym Sci Part B Polym Phys. 2016;54(17):1731–7.

    Article  CAS  Google Scholar 

  44. Sun L, Wang TX, Leow WC, Huang WM, Cui H, Gao XY. Temperature memory effect in differential scanning calorimeter test in thermoplastic polyurethane. J Polym Res. 2016;23(3):63. https://doi.org/10.1007/s10965-016-0958-9.

    Article  CAS  Google Scholar 

  45. Zheng YJ, Li JT, Cui LS. Repeatable temperature memory effect of TiNi shape memory alloys. Mater Lett. 2009;63(11):949–51. https://doi.org/10.1016/j.matlet.2009.01.069.

    Article  CAS  Google Scholar 

  46. Grillard F, Zakri C, Gaillard P, Korzhenko A, Néri W, Poulin P. How polymers lose memory with age. Soft Matter. 2014;10(44):8985–91.

    Article  CAS  PubMed  Google Scholar 

  47. Wang T, Huang W, Aw J, He L, Vettorello M. Comfort fitting using shape memory polymeric foam. J Test Eval. 2017;45(4):1201–12.

    Article  Google Scholar 

  48. Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H, Zheng LX, et al. Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function. Smart Mater Struct. 2012;21:115010.

    Article  CAS  Google Scholar 

  49. Salvekar AV, Zhou Y, Huang WM, Wong YS, Venkatraman SS, Shen Z, et al. Shape/temperature memory phenomena in un-crosslinked poly-ɛ-caprolactone (PCL). Eur Polym J. 2015;72:282–95.

    Article  CAS  Google Scholar 

  50. Sun L, Huang WM, Lu H, Lim KJ, Zhou Y, Wang TX, et al. Heating-responsive shape-memory effect in thermoplastic polyurethanes with low melt-flow index. Macromol Chem Phys. 2014;215(24):2430–6.

    Article  CAS  Google Scholar 

  51. He Q, Huang WM, Hong MH, Wu MJ, Chong TC, Chellet F, et al. Characterization of sputtering deposited NiTi shape memory thin films using a temperature controllable atomic force microscope. Smart Mater Struct. 2004;13(5):977–82. https://doi.org/10.1088/0964-1726/13/5/001.

    Article  CAS  Google Scholar 

  52. He Q, Hong MH, Huang WM, Chong TC, Fu YQ, Du HJ. CO2 laser annealing of sputtering deposited NiTi shape memory thin films. J Micromech Microeng. 2004;14(7):950–6. https://doi.org/10.1088/0960-1317/14/7/016.

    Article  CAS  Google Scholar 

  53. Wu MJ, Huang WM, Chollet F. In situ characterization of NiTi based shape memory thin films by optical measurement. Smart Mater Struct. 2006;15(2):N29–35. https://doi.org/10.1088/0964-1726/15/2/n01.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by AcRF Tier 1 (RG172/15) of Singapore, National Natural Science Foundation of China (51578347) of P.R. China, Natural Science Foundation of Liaoning Province (2015020578) of P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, T.X. & Huang, W.M. Monitoring minor over-heating/cooling temperature based on the temperature memory effect in shape memory materials via DSC. J Therm Anal Calorim 133, 1649–1661 (2018). https://doi.org/10.1007/s10973-018-7188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7188-9

Keywords

Navigation