Skip to main content
Log in

Temperature memory effect in differential scanning calorimeter test in thermoplastic polyurethane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The temperature memory effect (TME) in differential scanning calorimeter test of a thermoplastic polyurethane is investigated in two ways: one is termed TME1, in which the material is cooled down for full crystallization during thermal cycling; while the other is termed TME2, in which the material is cooled, but before any crystallization occurs. In the case of single heating stop temperature (Ts), for TME1, the temperature gap (△T) is almost a constant; while for TME2, △T roughly increases in a linear manner with the increase of Ts. We also extend the study to multiple heating stops (upon to four stops) in TME2. It is confirmed that a higher heating stop temperature is able to eliminate the influence of the previous heating cycles if their corresponding heating stop temperature is lower. It is concluded that in all tests (for both TME1 and TME2), △T may be estimated as Ts + 1.6 °C with an accuracy of about ±0.5 °C or 4.1 %. A schematic sketch to reveal the origin of △T is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tang C, Wang T, Huang W, Sun L, Gao X (2016) Temperature sensors based on the temperature memory effect in shape memory alloys to check minor over-heating. Sensors Actuator A Phys 238:337–343

    Article  CAS  Google Scholar 

  2. Airoldi G, Corsi A, Riva G (1993) Micromemory effects in shape memory alloys. Nuovo Cimento D 15:365–374

    Article  Google Scholar 

  3. Funakubo H (1987) Shape memory alloys. Gordon and Breach Science Publishers, New York

    Google Scholar 

  4. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  5. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61

    Article  CAS  Google Scholar 

  6. He Q, Huang WM, Hong MH, Wu MJ, Chong TC, Chellet F, et al. (2004) Characterization of sputtering deposited NiTi shape memory thin films using a temperature controllable atomic force microscope. Smart Mater Struct 13:977–982

    Article  CAS  Google Scholar 

  7. Wu MJ (2009) Surface metrology and optical properties of thin film shape memory alloys. Nanyang Technological University, Singapore

    Google Scholar 

  8. Fu YQ, Sanjabi S, Barber ZH, Huang WM, Cai M, Zhang S, et al. (2008) In-situ observation of transition between surface relief and wrinkling in thin film shape memory alloys. J Nanosci Nanotechnol 8:2588–2596

    Article  CAS  Google Scholar 

  9. Cai M, Fu YQ, Sanjabi S, Barber ZH, Dickinson JT (2007) Effect of composition on surface relief morphology in TiNiCu thin films. Surf Coat Technol 201:5843–5849

    Article  CAS  Google Scholar 

  10. Wang ZG, Zu XT (2005) Effect of incomplete transformation on the transformation behavior in TiNi shape memory alloys. J Mater Sci 40:2663–2665

    Article  CAS  Google Scholar 

  11. Airoldi G, Corsi A, Riva G (1998) Step-wise martensite to austenite reversible transformation stimulated by temperature or stress: a comparison in NiTi alloys. Mater Sci Eng A 241:233–240

    Article  Google Scholar 

  12. Wang ZG, Zu XT, Zhu S, Wang LM (2005) Temperature memory effect induced by incomplete transformation in TiNi shape memory alloy. Mater Lett 59:491–494

    Article  CAS  Google Scholar 

  13. Wang ZG, Zu XT, Yu HJ, He X, Peng C, Huo Y (2006) Temperature memory effect in CuAlNi single crystalline and CuZnAl polycrystalline shape memory alloys. Thermochim Acta 448:69–72

    Article  CAS  Google Scholar 

  14. Liu N, Huang WM (2006) DSC study on temperature memory effect of NiTi shape memory alloy. Trans Nonferrous Metal Soc China 16:S37–S41

    Article  Google Scholar 

  15. Liu N, Huang WM (2006) Comments on “incomplete transformation induced multiple-step transformation in TiNi shape memory alloys” [scripta mater 2005;53:335]. Scr Mater 55:493–495

    Article  CAS  Google Scholar 

  16. Sun L, Huang WM, Cheah JY (2010) The temperature memory effect and the influence of thermo-mechanical cycling in shape memory alloys. Smart Mater Struct 19:055005

    Article  Google Scholar 

  17. Krishnan M (2005) New observations on the thermal arrest memory effect in Ni-Ti alloys. Scr Mater 53:875–879

    Article  CAS  Google Scholar 

  18. Madangopal KT, Banerjee S, Lele S (1994) Thermal arrest memory effect. Acta Metall Mater 42:1875–1885

    Article  CAS  Google Scholar 

  19. Shahinpoor M (2005) Shape memory alloy temperature sensor. Patent No. US 6,837,620 B2

  20. Huang W (1998) Effects of internal stress and martensite variants on phase transformation of NiTi shape memory alloy. J Mater Sci Lett 17:1843–1844

    Article  CAS  Google Scholar 

  21. Miyazaki S, Fu YQ, Huang WM (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, New York

    Book  Google Scholar 

  22. Miyazaki S, Otsuka K (1986) Deformation and transition behavior associated with the R -phase in Ti-Ni alloys. Metall Mater Trans A Phys Metall Mater Sci 17:53–63

    Article  Google Scholar 

  23. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, et al. (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  24. Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403–4406

    Article  CAS  Google Scholar 

  25. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, et al. (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318:1294–1296

    Article  CAS  Google Scholar 

  26. Xie T, Page KA, Eastman SA (2011) Strain-based temperature memory effect for nafion and its molecular origins. Adv Funct Mater 21:2057–2066

    Article  Google Scholar 

  27. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, et al. (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952

    Article  Google Scholar 

  28. Wu X, Huang WM, Zhao Y, Ding Z, Tang C, Zhang J (2013) Mechanisms of the shape memory effect in polymeric materials. Polymers 5:1169–1202

    Article  Google Scholar 

  29. Purnawali H, Xu WW, Zhao Y, Ding Z, Wang CC, Huang WM, et al. (2012) Poly(methyl methacrylate) for active disassembly. Smart Mater Struct 21:075006

    Article  Google Scholar 

  30. Sun L, Huang WM, Lu HB, Wang CC, Zhang JL (2014) Shape memory technology for active assembly/disassembly: fundamentals, techniques and example applications. Assem Autom 34:78–93

    Article  Google Scholar 

  31. Yang WG, Lu HB, Huang WM, Qi HJ, Wu XL, Sun KY (2014) Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers 6:2287–2308

    Article  CAS  Google Scholar 

  32. Lu H, Huang WM, Wu XL, Ge YC, Zhang F, Zhao Y, et al. (2014) Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications. Smart Mater Struct 23:067002

    Article  Google Scholar 

  33. Sun L, Huang WM, Wang CC, Zhao Y, Ding Z, Purnawali H (2011) Optimization of the shape memory effect in shape memory polymers. J Polym Sci A Polym Chem 49:3574–3581

    Article  CAS  Google Scholar 

  34. Sun L, Huang WM, Lu H, Lim KJ, Zhou Y, Wang TX, et al. (2014) Heating-responsive shape-memory effect in thermoplastic polyurethanes with low melt-flow index. Macromol Chem Phys 215:2430–2436

    Article  CAS  Google Scholar 

  35. Zhu JJ, Huang WM, Liew KM (2003) Deformation energy in martensitic transformation. J Phys IV 112:179–182

    CAS  Google Scholar 

  36. Zhu JJ, Liang NG, Huang WM, Liew KM, Liu ZH (2002) A thermodynamic constitutive model for stress induced phase transformation in shape memory alloys. Int J Solids Struct 39:741–763

    Article  Google Scholar 

  37. Mura T (2013) Micromechanics of defects in solids. Springer Science & Business Media, New York

    Google Scholar 

  38. Zhou Y, Huang WM, Zhao Y, Ding Z, Li Y, Tor SB, et al. (2016) Memory phenomenon in a lanthanum based bulk metallic glass. J Alloys Compd. doi:10.1016/j.jallcom.2016.02.114

  39. An L, Huang WM (2006) Transformation characteristics of shape memory alloys in a thermal cycle. Mater Sci Eng A 420:220–227

    Article  Google Scholar 

Download references

Acknowledgments

This project is partially supported by National Natural Science Foundation of China (51578347) PR China, and Shanghai Natural Science Foundation (No. 15ZR1428200), PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Min Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, T.X., Leow, W.C. et al. Temperature memory effect in differential scanning calorimeter test in thermoplastic polyurethane. J Polym Res 23, 63 (2016). https://doi.org/10.1007/s10965-016-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0958-9

Keywords

Navigation