Skip to main content
Log in

The role of TiO2 nanoparticles in enhancing the structural, optical, and electrical properties of PVA/PVP/CMC ternary polymer blend: nanocomposites for capacitive energy storage

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein, titanium dioxide (TiO2) nanoparticles (NPs) were prepared via the sol–gel technique; then, they were incorporated into a ternary blend polymer matrix to design polymer nanocomposite (PNC) films through the solution casting technique. The ternary blend polymer matrix consisted of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and carboxymethyl cellulose (CMC). X-ray diffraction (XRD) analysis revealed reductions in the crystallinity structure of the polymer matrix after adding TiO2 NPs. The optical study manifested increases in the refractive index and reduction in the optical bandgap values, which reduced from 4.97 eV for the pure polymer blend to 4.77 eV for the PNC film at TiO2 content of 3 wt%. Additionally, the transmission edge gradually shifted towards lower energy. The PNC films exhibited considerable improvements in the dielectric constant (ε′), dielectric loss (ε′′), dielectric moduli (M′ and M′′), and electrical conductivity characteristics over the range of frequency range from 0.1 Hz to 10 MHz. The addition of TiO2 NPs improved the electrical conductivity and dielectric constant significantly. The electrical conductivity increased by over ten times compared to the pure ternary polymer blend, and ε′ also rose four-fold at 100 Hz. The enhancement in the electrical and dielectric parameters of the PNC films after adding TiO2 nanofiller could indicate the suitability of these samples for flexible-type energy storage applications, such as dielectric capacitors.

Graphical Abstract

Highlights

  • TiO2-NPs were prepared via sol–gel technique.

  • TiO2-NPs were used as a nanofiller with PVA/PVP/CMC blend to prepare nanocomposites.

  • The FTIR and XRD indicated the interaction between the polymer blend and TiO2-NPs.

  • The band gap of PVA/PVP/CMC blend decreased with increasing TiO2-NPs content.

  • The electrical and dielectric results show the use of the samples in energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola MO, Senthil Kumar P (2020) Optical, electrical, mechanical, and thermal properties and non-isothermal decomposition behavior of poly (vinyl alcohol)–ZnO nanocomposites. Iran Polym J 29(5):411–422

    Article  CAS  Google Scholar 

  2. Wonci Z, Tsolekile N, Matoetoe M (2022) Polyvinylpyrrolidone as a polymer template for CuInS quantum dots: effect on optical properties. Mater Today: Proc 56:1989–1994

    CAS  Google Scholar 

  3. AlSaidi RA, Alamri HR, Sharma K, Al-Muntaser A (2022) Insight into electronic structure and optical properties of ZnTPP thin films for energy conversion applications: experimental and computational study. Mater Today Commun 32:103874

    Article  CAS  Google Scholar 

  4. Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100(11):2832–2841

    Article  CAS  Google Scholar 

  5. Ghanbarzadeh B, Almasi H, Oleyaei SA (2013) A novel modified starch/carboxymethyl cellulose/montmorillonite bionanocomposite film: structural and physical properties. Int J Food Eng 10(1):121–130

    Article  Google Scholar 

  6. Al-Muntaser AA, Pashameah RA, re A, Alwafi R, Alzahrani E, AlSubhi SA, Yassin AY (2023) Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J Mater Sci-Mater Electron 34(7):678. https://doi.org/10.1007/s10854-023-10104-7

    Article  CAS  Google Scholar 

  7. Saeed A, Abolaban F, Al-Mhyawi SR, Albaidani K, Al Garni SE, Al-Marhaby FA, Alwafi R, Djouider F, Qahtan TF, Asnag GM (2023) Improving the polyethylene oxide/carboxymethyl cellulose blend’s optical and electrical/dielectric performance by incorporating gold quantum dots and copper nanoparticles: nanocomposites for energy storage applications. J Mater Res Technol-JMRT 24:8241–8251. https://doi.org/10.1016/j.jmrt.2023.05.073

    Article  CAS  Google Scholar 

  8. El Gohary HG, Alhagri IA, Qahtan TF, Al-Hakimi AN, Saeed A, Abolaban F, Alshammari EM, Asnag GM (2023) Reinforcement of structural, thermal and electrical properties and antibacterial activity of PVA/SA blend filled with hybrid nanoparticles (Ag and TiO2 NPs): nanodielectric for energy storage and food packaging industries‏. Ceram Int 49(12):20174–20184. https://doi.org/10.1016/j.ceramint.2023.03.141

    Article  CAS  Google Scholar 

  9. Al-Muntaser AA, Pashameah RA, Tarabiah AE, Alzahrani E, AlSubhi SA, Saeed A, Al-Harthi AM, Alwafi R, Morsi MA (2023) Structural, morphological, optical, electrical and dielectric features based on nanoceramic Li4Ti5O12 filler reinforced PEO/PVP blend for optoelectronic and energy storage devices. Ceram Int 49(11, Part B):18322–18333. https://doi.org/10.1016/j.ceramint.2023.02.204

    Article  CAS  Google Scholar 

  10. Gabal MA, Al-Harthy EA, Al Angari YM, Awad A, Al-Juaid AA, Saeed A (2023) Synthesis, characterization and electrical properties of polypyrrole/Mn0.8Zn0.2Fe2O4/GO ternary hybrid composites using spent Zn-C batteries. J Sol-Gel Sci Technol https://doi.org/10.1007/s10971-023-06053-6

  11. Rajabathar JR, Arunachalam P, Al-Lohedan HA, Thankappan R, Appaturi JN, Pulingam T, Mohammed Dahan W (2021) Polymer surfactant (Triton-100) assisted low cost method for preparing silver and graphene oxide modified Bi-MnOx nanocomposite for enhanced sensor and anti-microbial health care applications. J Sol-Gel Sci Technol 97(3):638–650. https://doi.org/10.1007/s10971-021-05468-3

    Article  CAS  Google Scholar 

  12. Erdem B, İşcan KB (2021) Multifunctional magnetic mesoporous nanocomposites towards multiple applications in dye and oil adsorption. J Sol-Gel Sci Technol 98(3):528–540. https://doi.org/10.1007/s10971-021-05528-8

    Article  CAS  Google Scholar 

  13. Ahmed HT, Abdullah OG (2019) Preparation and composition optimization of PEO:MC polymer blend films to enhance electrical conductivity. Polymers 11(5):853. https://doi.org/10.3390/polym11050853

    Article  CAS  Google Scholar 

  14. Abdullah OGH, Hanna RR, Salman YAK (2019) Structural and electrical conductivity of CH:MC bio-poly-blend films: optimize the perfect composition of the blend system. Bull Mater Sci 42(2):64. https://doi.org/10.1007/s12034-019-1742-3

    Article  CAS  Google Scholar 

  15. Aziz SB, Ahmed MJ, Abdullah OG, Murad AR, Hamad SM, Hadi JM (2023) Magnesium ion conducting biopolymer blend-based electrolyte for energy storage application: electrochemical characteristics. Electrochim Acta 461:142659. https://doi.org/10.1016/j.electacta.2023.142659

    Article  CAS  Google Scholar 

  16. Ghanbarzadeh B, Almasi H (2011) Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int J Biol Macromol 48(1):44–49

    Article  CAS  Google Scholar 

  17. Omar A, Ali MS, Abd Rahim N (2020) Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: a review. Sol Energy 207:1088–1121. https://doi.org/10.1016/j.solener.2020.07.028

    Article  CAS  Google Scholar 

  18. Jian Z, Yang N, Vogel M, Zhou Z, Zhao G, Kienitz P, Schulte A, Schönherr H, Jiao T, Zhang W, Jiang X (2020) Tunable photo-electrochemistry of patterned TiO2/BDD heterojunctions. Small Methods 4(9):2000257. https://doi.org/10.1002/smtd.202000257

    Article  CAS  Google Scholar 

  19. Li R, Ma X, Li J, Cao J, Gao H, Li T, Zhang X, Wang L, Zhang Q, Wang G, Hou C, Li Y, Palacios T, Lin Y, Wang H, Ling X (2021) Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat Commun 12(1):1587. https://doi.org/10.1038/s41467-021-21852-7

    Article  CAS  Google Scholar 

  20. Sertel BC, Sonmez NA, Kaya MD, Ozcelik S (2019) Development of MgO:TiO2 thin films for gas sensor applications. Ceram Int 45(3):2917–2921. https://doi.org/10.1016/j.ceramint.2018.11.079

    Article  CAS  Google Scholar 

  21. Sebak MA, Qahtan TF, Asnag GM, Abdallah EM (2022) The role of TiO2 nanoparticles in the structural, thermal and electrical properties and antibacterial activity of PEO/PVP blend for energy storage and antimicrobial application. J Inorg Organomet Polym Mater 32(12):4715–4728. https://doi.org/10.1007/s10904-022-02440-8

    Article  CAS  Google Scholar 

  22. Yu H-F, Cheng C-W (2021) Enhancing photocatalytic ability of TiO2 films using gel-derived P/Si-TiO2 powder. J Sol-Gel Sci Technol 97(2):259–270. https://doi.org/10.1007/s10971-020-05450-5

    Article  CAS  Google Scholar 

  23. Chen L, Tao Y, Shang H, Ma Z, Li S, Cao H, Li Q, Li G, Li H, Xiao S, Zhang D (2022) Rutile TiO2 nanorods grown on carbon nanotubes as high-performance lithium-ion batteries anode via one-dimensional electron pathways. J Sol-Gel Sci Technol 103(2):437–446. https://doi.org/10.1007/s10971-022-05835-8

    Article  CAS  Google Scholar 

  24. Khoroshko L, Borisenko V, Baltrukovich P, Nurmonov S, Ruzimuradov O (2022) One-step sol-gel fabrication of TiO2/(CuO+Cu2O) photocatalysts. J Sol-Gel Sci Technol https://doi.org/10.1007/s10971-022-05906-w

  25. Boudiar M, Hanini F, Bouabellou A, Bouachiba Y, Taabouche A, Dergham D, Redjeb C (2023) Sol–gel derived Zn doped TiO2 thin films and their waveguides. J Sol-Gel Sci Technol 107(2):430–440. https://doi.org/10.1007/s10971-023-06133-7

    Article  CAS  Google Scholar 

  26. Almashhori K, Ali TT, Saeed A, Alwafi R, Aly M, Al-Hazmi FE (2020) Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. N J Chem 44(2):562–570. https://doi.org/10.1039/C9NJ03258D

    Article  CAS  Google Scholar 

  27. Abdel-Galil A, Ali H, Atta A, Balboul M (2014) Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Radiat Res Appl Sci 7(1):36–43

    CAS  Google Scholar 

  28. Ezati P, Riahi Z, Rhim J-W (2022) CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocoll 122:107104

    Article  CAS  Google Scholar 

  29. Ren J, Wang S, Gao C, Chen X, Li W, Peng F (2015) TiO2-containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22(1):593–602

    Article  CAS  Google Scholar 

  30. Bisen R, Tripathi J, Sharma A, Khare A, Kumar Y, Tripathi S (2018) Optical behaviour of coumarin dye in PVA and PMMA film matrices. Vacuum 152:65–69

    Article  CAS  Google Scholar 

  31. Al-Muntaser AA, Alzahrani E, Abo-Dief HM, Saeed A, Alshammari EM, Al-Harthi AM, Tarabiah AE (2023) Tuning the structural, optical, electrical, and dielectric properties of PVA/PVP/CMC ternary polymer blend using ZnO nanoparticles for nanodielectric and optoelectronic devices. Opt Mater 140:113901. https://doi.org/10.1016/j.optmat.2023.113901

    Article  CAS  Google Scholar 

  32. Morsi MA, Pashameah RA, Sharma K, Alzahrani E, Farea MO, Al-Muntaser AA (2022) Hybrid MWCNTs/Ag nanofiller reinforced PVP/CMC blend-based polymer nanocomposites for multifunctional optoelectronic and nanodielectric applications. J Polym Environ https://doi.org/10.1007/s10924-022-02656-2

  33. Chen Y-N, Jiao C, Zhao Y, Zhang J, Wang H (2018) Self-assembled polyvinyl alcohol–tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3(9):11788–11795. https://doi.org/10.1021/acsomega.8b02041

    Article  CAS  Google Scholar 

  34. Aziz SB, Abdulwahid RT, Rasheed MA, Abdullah OG, Ahmed HM (2017) polymer blending as a novel approach for tuning the spr peaks of silver nanoparticles. Polymers 9(10) https://doi.org/10.3390/polym9100486

  35. Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425. https://doi.org/10.1016/j.carbpol.2018.07.031

    Article  CAS  Google Scholar 

  36. Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4(2):135–144. https://doi.org/10.1002/pol.1949.120040203

    Article  CAS  Google Scholar 

  37. Elashmawi I, Abdelrazek E, Yassin A (2014) Influence of NiCl2/CdCl2 as mixed filler on structural, thermal and electrical properties of PVA/PVP blend. Br J Appl Sci Technol 4(30):4263

    Article  Google Scholar 

  38. Gunathilake TMSU, Ching YC, Chuah CH, Hai ND, Nai-Shang L (2020) Electro-stimulated release of poorly water-soluble drug from poly (lactic acid)/carboxymethyl cellulose/ZnO nanocomposite film. Pharm Res 37(9):1–20

    Article  Google Scholar 

  39. Cuevas JC, Heurich J, Pauly F, Wenzel W, Schön G (2003) Theoretical description of the electrical conduction in atomic and molecular junctions. Nanotechnology 14(8):R29

    Article  CAS  Google Scholar 

  40. Elashmawi I, Al-Muntaser A (2021) Influence of Co3O4 nanoparticles on the optical, and electrical properties of CMC/PAM polymer: combined FTIR/DFT study. J Inorg Organomet Polym Mater 31(6):2682–2690

    Article  CAS  Google Scholar 

  41. Abdelrazek E, Elashmawi I, El-Khodary A, Yassin A (2010) Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 10(2):607–613

    Article  Google Scholar 

  42. Sengwa RJ, Choudhary S, Dhatarwal P (2019) Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J Mater Sci-Mater Electron 30(13):12275–12294

    Article  CAS  Google Scholar 

  43. Al-Muntaser A, Pashameah RA, Sharma K, Alzahrani E, Hameed S, Morsi M (2022) Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications. Opt Mater 132:112799

    Article  CAS  Google Scholar 

  44. Atta M, Alsulami QA, Asnag G, Rajeh A (2021) Enhanced optical, morphological, dielectric, and conductivity properties of gold nanoparticles doped with PVA/CMC blend as an application in organoelectronic devices. J Mater Sci-Mater Electron 32(8):10443–10457

    Article  CAS  Google Scholar 

  45. Othman MA, Amat NF, Ahmad BH, Rajan J (2014) Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method. J Phys: Conf Ser 1:012027. IOP Publishing, p

    Google Scholar 

  46. Pike G (1972) AC conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6(4):1572

    Article  CAS  Google Scholar 

  47. Elliott S (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36(2):135–217

    Article  CAS  Google Scholar 

  48. Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, Wei M, Li M, Liao Y (2018) Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53(4):2638–2647

    Article  CAS  Google Scholar 

  49. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SK, Polu AR, Chidambaram K (2017) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134 (5)

  50. Saeed A, Madkhli AY, Al-Dossari M, Abolaban F (2022) Electrical and dielectric properties of composites composed of natural quartz with aluminum. Silicon 14(15):9517–9531. https://doi.org/10.1007/s12633-022-01713-8

    Article  CAS  Google Scholar 

  51. Saeed A, Al-Buriahi MS, Razvi MAN, Salah N, Al-Hazmi FE (2021) Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. J Mater Sci-Mater Electron 32(2):2075–2087. https://doi.org/10.1007/s10854-020-04974-4

    Article  CAS  Google Scholar 

  52. Saeed A, Adewuyi SO, Ahmed HAM, Alharbi SR, Al Garni SE, Abolaban F (2022) Electrical and dielectric properties of the natural calcite and quartz. Silicon 14(10):5265–5276. https://doi.org/10.1007/s12633-021-01318-7

    Article  CAS  Google Scholar 

  53. Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma A, VVR NR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non·Cryst Solids 358(23):3205–3211

    Article  Google Scholar 

  54. Alsulami QA, Rajeh A (2021) Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend. Results Phys 28:104675

    Article  Google Scholar 

  55. Gabal MA, Al-Harthy EA, Al Angari YM, Abdel Salam M, Awad A, Al-Juaid AA, Saeed A (2022) Synthesis, characterization and dye removal capability of conducting polypyrrole/Mn0.8Zn0.2Fe2O4/graphite oxide ternary composites. Catalysts 12(12):1624. https://doi.org/10.3390/catal12121624

    Article  CAS  Google Scholar 

  56. Choudhary S, Sengwa R (2019) Investigation on structural and dielectric properties of silica nanoparticles incorporated poly (ethylene oxide)/poly (vinyl pyrrolidone) blend matrix based nanocomposites. J Inorg Organomet Polym Mater 29(2):592–607

    Article  CAS  Google Scholar 

  57. Alwafi R, Saeed A (2022) Single-walled carbon nanotubes in nanosized basalts as nanocomposites: the electrical/dielectric properties and electromagnetic interference shielding performance. J Inorg Organomet Polym Mater 32(11):4340–4358. https://doi.org/10.1007/s10904-022-02450-6

    Article  CAS  Google Scholar 

  58. Al‐Muntaser AA, Pashameah RA, Sharma K, Alzahrani E, Tarabiah AE (2022) Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: nanocomposites materials for energy‐storage applications. Int J Energy Res 46(15):23984–23995

    Article  Google Scholar 

  59. Choudhary S (2017) Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Phys B: Condens Matter 522:48–56

    Article  CAS  Google Scholar 

  60. Al‐Muntaser A, AlSaidi RA, Sharma K, Alamri HR, Makhlouf M (2022) Structural, optical, electrical, and DFT studies on polyvinyl pyrrolidone/polyethylene oxide polymer blend filled with MoO3 nanoplates for flexible energy‐storage devices. Int J Energy Res 46(10):13832–13843

    Article  Google Scholar 

  61. Al-Muntaser A, Alzahrani E, Saeed A, Al Naim AF, Abo-Dief HM, Qusti SY, Tarabiah A (2023) An insight into the role of titanium oxide nanofiller on the structural, optical, electrical, and dielectric characteristics of PS/PVK composite. Phys Scr 98 (7)

  62. Kaur S, Kumar A, Sharma AL, Singh DP (2019) Dielectric and energy storage behavior of CaCu3Ti4O12 nanoparticles for capacitor application. Ceram Int 45(6):7743–7747. https://doi.org/10.1016/j.ceramint.2019.01.077

    Article  CAS  Google Scholar 

  63. Kaur S, Singh DP (2020) On the structural, dielectric and energy storage behaviour of PVDF- CaCu3Ti4O12 nanocomposite films. Mater Chem Phys 239:122301. https://doi.org/10.1016/j.matchemphys.2019.122301

    Article  CAS  Google Scholar 

  64. Jaidka S, Aggarwal A, Chopra S, Singh DP (2022) Significantly enhanced dielectric behavior of polyvinylidene fluoride-barium strontium titanate flexible nanocomposite thick films: role of electric field-induced effects. J Electron Mater 51(9):5429–5439. https://doi.org/10.1007/s11664-022-09784-4

    Article  CAS  Google Scholar 

  65. Koduru H, Scarpelli F, Marinov Y, Hadjichristov G, Rafailov P, Miloushev I, Petrov A, Godbert N, Bruno L, Scaramuzza N (2018) Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical, and conductivity properties. Ionics 24(11):3459–3473

    Article  CAS  Google Scholar 

  66. Al‐Muntaser AA, Pashameah RA, Sharma K, Alzahrani E, Tarabiah AE (2022) Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: nanocomposites materials for energy‐storage applications. Int J Energy Res 46:23984–23995

    Article  Google Scholar 

  67. Chérif SF, Chérif A, Dridi W, Zid MF (2020) Ac conductivity, electric modulus analysis, dielectric behavior and Bond Valence Sum analysis of Na3Nb4As3O19 compound. Arab J Chem 13(6):5627–5638. https://doi.org/10.1016/j.arabjc.2020.04.003

    Article  CAS  Google Scholar 

  68. Chatterjee B, Gupta PN (2012) Nanocomposite films dispersed with silica nanoparticles extracted from earthworm humus. J Non·Cryst Solids 358(23):3355–3364. https://doi.org/10.1016/j.jnoncrysol.2012.08.020

    Article  CAS  Google Scholar 

  69. Farea M, Abdelghany A, Oraby A (2020) Optical and dielectric characteristics of polyethylene oxide/sodium alginate-modified gold nanocomposites. RSC Adv 10(62):37621–37630

    Article  CAS  Google Scholar 

  70. Youssif M, Abdelghany A, Abdelrazek E, Rashad D, Zidan H (2020) Structure dielectric correlation of PEO/PVP incorporated with biosynthesized gold nanoparticles. J Polym Res 27(12):1–14

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by Institutional Fund Project under grant no. (IFPIP: 1871-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MMD: Project Administration, Methodology, Review & Editing, Formal Analysis, Validation, Visualization, Funding Acquisition. AS: Supervision, Conceptualization, Methodology, Resources, Software, Data Curation, Writing—Original Draft, Review & Editing, Formal Analysis, Validation, Visualization. EMA: Writing - Original Draft, Review & Editing Formal Analysis. AMA: Writing—Original Draft, Review & Editing Formal Analysis. AYY: Conceptualization, Software, Review & Editing, Formal Analysis, Validation, Visualization. JAMA: Writing, Review & Editing. AAA-M: Supervision, Conceptualization, Methodology, Resources, Software, Data Curation, Writing—Original Draft, Review & Editing, Formal Analysis, Validation, Visualization. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Abdu Saeed or A. A. Al-Muntaser.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damoom, M.M., Saeed, A., Alshammari, E.M. et al. The role of TiO2 nanoparticles in enhancing the structural, optical, and electrical properties of PVA/PVP/CMC ternary polymer blend: nanocomposites for capacitive energy storage. J Sol-Gel Sci Technol 108, 742–755 (2023). https://doi.org/10.1007/s10971-023-06223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06223-6

Keywords

Navigation