Skip to main content
Log in

Electrical and Dielectric Properties of Composites Composed of Natural Quartz with Aluminum

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Quartz is the most common mineral in continental crust rocks. It has been used for multiple industrial purposes. Herein, we have investigated the effect of aluminum (Al) additions on the electrical/dielectric properties of the natural quartz. The natural quartz was collected and ground to form fine powders; Al has been added to and mixed with the natural powders et al. ratios of 0, 10, 20, and 30 wt.% under powerful stirrer and sonication. The obtained powders were calcined at 900 K; then, their morphological features, chemical element compositions, crystal phases, and chemical group functions were identified respectively by SEM, EDX, XRD, and FTIR. Then, the electrical and dielectric features of the fabricated natural quartz-Al composites were evaluated in the temperature and frequency ranges of 300–900 K and 5 kHz-8 MHz, respectively. The XRD patterns and FTIR spectra showed no significant changes in the crystallinity and structure between natural quartz and its composites with Al while adding Al. Remarkably, adding Al to the natural quartz enhanced the electrical and dielectric properties considerably, particularly at the high ratio of Al. At room temperature, the electrical conductivity of the prepared natural quartz-aluminum composites recorded 1.45, 11.13, 17.22, and 45.90 S/cm with the Al ratios of 0, 10, 20, and 30 wt.%, respectively. At the same time, their dielectric constant recorded 15.75, 60.09, 91.59, and 167.75. These results could be illustrated that being the Al as a conductor might take shape distributed areas in the natural quartz, resulting in the increasing values of the electrical conductivity, the dielectric constant, and the dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no linked research data for this submission; all data have been included inside this work.

References

  1. Shaffer NR (2006) The time of sands: Quartz-rich sand deposits as a renewable resource. Electronic Green J 1 (24) https://doi.org/10.5070/G312410669

  2. Götze J (2009) Chemistry, textures and physical properties of quartz — geological interpretation and technical application. Mineral Mag 73(4):645–671. https://doi.org/10.1180/minmag.2009.073.4.645

    Article  CAS  Google Scholar 

  3. Vatalis KI, Charalambides G, Benetis NP (2015) Market of high purity quartz innovative applications. Procedia Economics and Finance 24:734–742. https://doi.org/10.1016/S2212-5671(15)00688-7

    Article  Google Scholar 

  4. Platias S, Vatalis KI, Charalampides G (2014) Suitability of quartz sands for different industrial applications. Procedia Economics and Finance 14:491–498. https://doi.org/10.1016/S2212-5671(14)00738-2

    Article  Google Scholar 

  5. Xakalashe BS, Tangstad M (2012) Silicon processing: from quartz to crystalline silicon solar cells. Chem Technol (March):6–9

  6. Enculescu I, Iliescu B (1997) Electrical conductivity of quartz crystals. Cryst Res Technol 32(7):879–891. https://doi.org/10.1002/crat.2170320702

    Article  CAS  Google Scholar 

  7. Campbell MJ, Ulrichs J (1969) Electrical properties of rocks and their significance for lunar radar observations. J Geophysical Res (1896–1977) 74 (25):5867–5881 https://doi.org/10.1029/JB074i025p05867

  8. Jain H, Nowick AS (1982) Electrical conductivity of synthetic and natural quartz crystals. J Appl Phys 53(1):477–484. https://doi.org/10.1063/1.329949

    Article  CAS  Google Scholar 

  9. Zisser N, Kemna A, Nover G (2010) Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones. Geophysics 75(3):E131–E141. https://doi.org/10.1190/1.3413260

    Article  Google Scholar 

  10. Hui KS, Zhang H, Li HP, Dai LD, Hu HY, Jiang JJ, Sun WQ (2015) Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: evidence of grain boundary transport. Solid Earth 6(3):1037–1043. https://doi.org/10.5194/se-6-1037-2015

    Article  Google Scholar 

  11. Saeed A, Adewuyi SO, Ahmed HAM, Alharbi SR, Al Garni SE, Abolaban F (2021) Electrical and dielectric properties of the natural calcite and quartz. SILICON. https://doi.org/10.1007/s12633-021-01318-7

    Article  Google Scholar 

  12. Saeed A, Qusti SY, Almarwani RH, Jambi EJ, Alshammari EM, Gusty NF, Balgoon MJ (2021) Effects of aluminum chloride and coenzyme Q10 on the molecular structure of lipids and the morphology of the brain hippocampus cells. RSC Adv 11(48):29925–29933. https://doi.org/10.1039/D1RA03786B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Favero G, Jobstraibizer P (1996) The distribution of aluminium in the earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:367–400. https://doi.org/10.1016/S0010-8545(96)90040-5

    Article  CAS  Google Scholar 

  14. Skalsky HL, Carchman RA (1983) Aluminum homeostasis in man. J Am Coll Toxicol 2(6):405–423. https://doi.org/10.3109/10915818309140728

    Article  CAS  Google Scholar 

  15. Serway RA, Jewett JW (1998) Principles of physics, vol 1. Saunders College Pub. Fort Worth, TX,

  16. Valiev RZ, Murashkin MY, Sabirov I (2014) A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Mater 76:13–16. https://doi.org/10.1016/j.scriptamat.2013.12.002

    Article  CAS  Google Scholar 

  17. Cui X, Wu Y, Zhang G, Liu Y, Liu X (2017) Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys. Compos B Eng 110:381–387. https://doi.org/10.1016/j.compositesb.2016.11.042

    Article  CAS  Google Scholar 

  18. Kelly PJ, Zhou Y (2006) Zinc oxide-based transparent conductive oxide films prepared by pulsed magnetron sputtering from powder targets: Process features and film properties. J Vac Sci Technol, A 24(5):1782–1789. https://doi.org/10.1116/1.2218857

    Article  CAS  Google Scholar 

  19. Park SM, Lee DH, Lim YS, Kim DK, Yi M (2013) Effect of aluminum addition to solution-derived amorphous indium zinc oxide thin film for an oxide thin film transistors. Microelectron Eng 109:189–192. https://doi.org/10.1016/j.mee.2013.03.121

    Article  CAS  Google Scholar 

  20. Lapovok R, Berner A, Qi Y, Xu C, Rabkin E, Beygelzimer Y (2020) The effect of a small copper addition on the electrical conductivity of aluminum. Adv Eng Mater 22(6):2000058. https://doi.org/10.1002/adem.202000058

    Article  CAS  Google Scholar 

  21. Saeed A, Alomairy S, Sriwunkum C, Al-Buriahi MS (2021) Neutron and charged particle attenuation properties of volcanic rocks. Radiat Phys Chem 184:109454. https://doi.org/10.1016/j.radphyschem.2021.109454

    Article  CAS  Google Scholar 

  22. Baghdadi N, Saeed A, Ansari AR, Hammad AH, Afify A, Salah N (2021) Controlled nanostructuring via aluminum doping in CuO nanosheets for enhanced thermoelectric performance. J Alloys Compd 869:159370. https://doi.org/10.1016/j.jallcom.2021.159370

    Article  CAS  Google Scholar 

  23. Alraddadi S, Saeed A, Assaedi H (2020) Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria. J Mater Sci-Mater Electron 31(14):11688–11699. https://doi.org/10.1007/s10854-020-03720-0

    Article  CAS  Google Scholar 

  24. Saeed A, Al-Buriahi MS, Razvi MAN, Salah N, Al-Hazmi FE (2021) Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. J Mater Sci-Mater Electron 32(2):2075–2087. https://doi.org/10.1007/s10854-020-04974-4

    Article  CAS  Google Scholar 

  25. Salah N, Baghdadi N, Alshahrie A, Saeed A, Ansari AR, Memic A, Koumoto K (2019) Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators. J Eur Ceram Soc 39(11):3307–3314. https://doi.org/10.1016/j.jeurceramsoc.2019.04.036

    Article  CAS  Google Scholar 

  26. Alharbi SR, Alhassan M, Jalled O, Wageh S, Saeed A (2018) Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J Mater Sci 53(16):11584–11594. https://doi.org/10.1007/s10853-018-2458-2

    Article  CAS  Google Scholar 

  27. Jalled O, Alharbi Z, Alharbi SR, Saeed A, Alhassan M, Al-Heniti S, Mohammed HY, Al-Hadeethi Y, Al-Marzouki F, Al-Mujtaba A (2017) Synthesis and dielectric properties of nanocrystalline strontium bismuth niobate. J Nanosci Nanotechnol 17(1):594–600. https://doi.org/10.1166/jnn.2017.12459

    Article  CAS  PubMed  Google Scholar 

  28. Khater GA, Gomaa MM, Kang J, Yue Y, Mahmoud MA (2020) Thermal, electrical and physical properties of glasses based on basaltic rocks. SILICON 12(3):645–653. https://doi.org/10.1007/s12633-019-00142-4

    Article  CAS  Google Scholar 

  29. Khater GA, Nabawy BS, Kang J, Yue Y, Mahmoud MA (2020) Magnetic and electrical properties of glass and glass-ceramics based on weathered basalt. Silicon 12(12):2921–2940. https://doi.org/10.1007/s12633-020-00391-8

    Article  CAS  Google Scholar 

  30. Kekec B, Unal M, Sensogut C (2006) Effect of the textural properties of rocks on their crushing and grinding features. J Univ Sci Technol Beijing 13(5):385–392. https://doi.org/10.1016/S1005-8850(06)60079-0

    Article  Google Scholar 

  31. Hlavay J, Jonas K, Elek S, Inczedy J (1978) Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods—II. investigations on quartz and feldspar. Clays Clay Miner 26 (2):139–143. https://doi.org/10.1346/CCMN.1978.0260209

  32. Nana A, Tomé S, Anensong SCD, Venyite P, Djobo JNY, Ngouné J, Kamseu E, Bignozzi MC, Leonelli C (2021) Mechanical performance, phase evolution and microstructure of natural feldspathic solid solutions consolidated via alkali activation: effect of NaOH concentration. Silicon. https://doi.org/10.1007/s12633-021-01193-2

  33. Nana A, Alomayri TS, Venyite P, Kaze RC, Assaedi HS, Nobouassia CB, Sontia JVM, Ngouné J, Kamseu E, Leonelli C (2020) Mechanical properties and microstructure of a metakaolin-based inorganic polymer mortar reinforced with quartz sand. Silicon. https://doi.org/10.1007/s12633-020-00816-4

  34. Che C, Glotch TD, Bish DL, Michalski JR, Xu W (2011) Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. Journal of Geophysical Research: Planets 116 (E5). https://doi.org/10.1029/2010JE003740

  35. Sontevska V, Jovanovski G, Makreski P, Raskovska A, Soptrajanov B (2008) Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals. ACTA CHIMICA SLOVENICA 55 (4):757–766

  36. Rule AC, Guggenheim S (2002). Teaching clay science. https://doi.org/10.1346/CMS-WLS-11

    Article  Google Scholar 

  37. Fahad M, Ali S, Shah KH, Shahzad A, Abrar M (2019) Quantitative elemental analysis of high silica bauxite using calibration-free laser-induced breakdown spectroscopy. Appl Opt 58(27):7588–7596. https://doi.org/10.1364/AO.58.007588

    Article  CAS  PubMed  Google Scholar 

  38. Seri O, Sasaki D (2009) Preparation of aluminumtriethoxide by application of aluminum corrosion. Journal of Japan Institute of Light Metals 59:685–688. https://doi.org/10.2464/jilm.59.685

    Article  Google Scholar 

  39. Zhu L, Pu S, Lu F, Liu K, Zhu T, Li J, Li J (2012) Preparation of dispersed aluminum hydroxide nanoparticles via non-aqueous route and surface modification. Mater Chem Phys 135(2):979–984. https://doi.org/10.1016/j.matchemphys.2012.06.002

    Article  CAS  Google Scholar 

  40. Gabal MA, Al-Solami F, Al Angari YM, Awad A, Al-Juaid AA, Saeed A (2020) Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. J Mater Sci-Mater Electron 31(4):3146–3158. https://doi.org/10.1007/s10854-020-02861-6

    Article  CAS  Google Scholar 

  41. Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38(23):4611–4637. https://doi.org/10.1023/A:1027402430153

    Article  CAS  Google Scholar 

  42. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA, Al Angari YM, Saeed A (2019) Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J Inorg Organomet Polym Mater 29(6):2197–2213. https://doi.org/10.1007/s10904-019-01179-z

    Article  CAS  Google Scholar 

  43. Gabal MA, Al-Zahrani NH, Angari YMA, Saaed A (2018) Substitution effect on the structural, magnetic, and electrical properties of Co1−xZnxFe2O4 nanocrystalline ferrites ( $x = 0$ –1) prepared via gelatin auto-combustion method. IEEE Trans Magn 54(1):1–12. https://doi.org/10.1109/TMAG.2017.2752726

  44. Gabal MA, Bayoumy WA, Saeed A, Al Angari YM (2015) Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via Egg-white route. J Mol Struct 1097:45–51. https://doi.org/10.1016/j.molstruc.2015.04.032

    Article  CAS  Google Scholar 

  45. Gomaa MM (2020) Homogeneous mixture of hematite and its electrical properties. Mater Chem Phys 243:122584. https://doi.org/10.1016/j.matchemphys.2019.122584

    Article  CAS  Google Scholar 

  46. Gomaa MM (2009) Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non-polarizing electrodes. Geophys Prospect 57(6):1091–1100. https://doi.org/10.1111/j.1365-2478.2009.00797.x

    Article  Google Scholar 

  47. Gomaa MM (2021) Modeling kaolinite electrical features under pressure using Pseudo Random Renormalization Group method at the audio frequency range. J Phys Chem Solids 152:109963. https://doi.org/10.1016/j.jpcs.2021.109963

    Article  CAS  Google Scholar 

  48. Salem SM, Antar EM, Mostafa AG, Salem SM, El-badry SA (2011) Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J Mater Sci 46(5):1295–1304. https://doi.org/10.1007/s10853-010-4915-4

    Article  CAS  Google Scholar 

  49. Al-Buriahi MS, Alomairy S, Saeed A, Abouhaswa AS, Rammah YS (2021) Effect of ZrO2 addition on electrical and mechanical properties of B2O3–PbO–Li2O3 glasses. Ceram Int 47(9):13065–13070. https://doi.org/10.1016/j.ceramint.2021.01.170

    Article  CAS  Google Scholar 

  50. Abdel-Khalek EK, Elsharkawy MA, Motawea MA, Elesh E, Farag ATM (2021) Dielectric and thermal properties of tetragonal pbtio3 nanoparticles/clusters embedded in lithium tetraborate glass matrix. SILICON 13(9):2993–3002. https://doi.org/10.1007/s12633-020-00648-2

    Article  CAS  Google Scholar 

  51. Gabal MA, Al-Solami F, Al Angari YM, Awad A, Al-Juaid AA, Saeed A (2020) Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. Mater Sci-Mater Electron 31(4):3146–3158. https://doi.org/10.1007/s10854-020-02861-6

    Article  CAS  Google Scholar 

  52. Saxena P, Yadav A (2021) Effect of transition metal on structural and dielectric properties of Mg 0.5 Tm 0.5 Fe 2 O 4 (Tm = Zn and Cu) System. In. https://doi.org/10.5772/intechopen.96729

  53. Chen R, Wang X, Gui Z, Li L (2003) Effect of silver addition on the dielectric properties of barium titanate-based X7R ceramics. J Am Ceram Soc 86(6):1022–1024. https://doi.org/10.1111/j.1151-2916.2003.tb03412.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. RG-87-135-42. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Funding

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. RG-87-135-42.

Author information

Authors and Affiliations

Authors

Contributions

Abdu Saeed: Conceptional, Methodology; Formal analysis; Investigation; Data Curation; Writing—Original Draft. Aysh Y. Madkhli: Supervision; Resources; Review & Editing. M. Al-Dossari: Supervision; Validation; Writing—Review & Editing. Fouad Abolaban: Funding; Writing—Review & Editing.

Corresponding author

Correspondence to Abdu Saeed.

Ethics declarations

Consent for Publication

The authors of this work agree for publication.

Competing Interests

The authors declare no competing interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Madkhli, A.Y., Al-Dossari, M. et al. Electrical and Dielectric Properties of Composites Composed of Natural Quartz with Aluminum. Silicon 14, 9517–9531 (2022). https://doi.org/10.1007/s12633-022-01713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01713-8

Keywords

Navigation