Skip to main content

Advertisement

Log in

Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, graphene nanoplatelet (GNP) and copper nanoparticles (Cu NPs) were successfully incorporated into polystyrene (PS) via a solution casting approach, and a series of PS/GNP/Cu NPs nanocomposites were obtained. The present series’ structural, optical, and dielectric properties were deeply studied. The semicrystalline nature of the nanocomposites was affirmed by the X-ray diffraction (XRD) findings. The crystallite size (D) of Cu NPs was 4–27 nm, as reported in XRD analysis and confirmed by transmission electron microscopy (TEM). The optical absorption spectra were utilized to calculate some optical parameters such as optical energy gaps, refractive index, and band gap metallization criterion (MEg), where their values exhibited an enhancement in the optical properties of the nanocomposite films. Fourier transform infrared spectroscopic analysis (FT-IR) showed that the polymeric matrix and the GNP/Cu NPs hybrid nanofillers were complexed via hydrogen and coordination bonds. The AC conductivity and dielectric characteristics were investigated using broadband dielectric spectroscopy (BDS), which exhibited that the existence of the GNP/Cu NPs hybrid nanofillers significantly improved the charge/capacitive storage abilities of the prepared nanocomposites. Thus, the fascinating enhancement in AC conductivity and dielectric properties demonstrates the favorable applications of PS/GNP/Cu NPs nanocomposite films in flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Sai, D. Sethy, S. Francis, M.S.Y. Kumar, F.V. Varghese, K. Balasubramaniam, Optical properties of multilayer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) composite flexible thin films prepared by solvent casting. J. Mater. Sci.-Mater. Electron. 32(22), 26750–26757 (2021). https://doi.org/10.1007/s10854-021-07052-5

    Article  CAS  Google Scholar 

  2. A.A. Al-Muntaser, R.A.M. AlSaidi, K. Sharma, H.R. Alamri, M.M. Makhlouf, Structural, optical, electrical, and DFT studies on polyvinyl pyrrolidone/polyethylene oxide polymer blend filled with MoO3 nanoplates for flexible energy-storage devices. Int. J. Energy Res. 46(10), 13832–13843 (2022). https://doi.org/10.1002/er.8101

    Article  CAS  Google Scholar 

  3. R.A.M. AlSaidi, H.R. Alamri, K. Sharma, A.A. Al-Muntaser, Insight into electronic structure and optical properties of ZnTPP thin films for energy conversion applications: experimental and computational study. Mater Today Commun 32, 103874 (2022). https://doi.org/10.1016/j.mtcomm.2022.103874

    Article  CAS  Google Scholar 

  4. A.M. Salem, A.R. Mohamed, A.M. Abdelghany, A.Y. Yassin, Effect of polypyrrole on structural, optical and thermal properties of CMC-based blends for optoelectronic applications. Opt. Mater. 134, 113128 (2022). https://doi.org/10.1016/j.optmat.2022.113128

    Article  CAS  Google Scholar 

  5. A. Patra, M. Bendikov, S. Chand, Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Acc. Chem. Res. 47(5), 1465–1474 (2014). https://doi.org/10.1021/ar4002284

    Article  CAS  Google Scholar 

  6. A.Y. Yassin, A.M. Abdelghany, Synthesis and thermal stability, electrical conductivity and dielectric spectroscopic studies of poly (ethylene-co-vinyl alcohol)/graphene oxide nanocomposite. Phys. B 608, 412730 (2021). https://doi.org/10.1016/j.physb.2020.412730

    Article  CAS  Google Scholar 

  7. A.Y. Yassin, A.-R. Mohamed, E.M. Abdelrazek, M.A. Morsi, A.M. Abdelghany, Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J. Mater. Res. Technol-JMRT 8(1), 1111–1120 (2019). https://doi.org/10.1016/j.jmrt.2018.08.005

    Article  CAS  Google Scholar 

  8. A.A. Al-Muntaser, R.A. Pashameah, K. Sharma, E. Alzahrani, A.E. Tarabiah, Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: Nanocomposites materials for energy-storage applications. Int. J. Energy Res. 46(15), 23984–23995 (2022). https://doi.org/10.1002/er.8695

    Article  CAS  Google Scholar 

  9. A.Y. Yassin, A.R. Mohamed, A.M. Abdelghany, E.M. Abdelrazek, Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J. Mater. Sci.-Mater. Electron. 29(18), 15931–15945 (2018). https://doi.org/10.1007/s10854-018-9679-7

    Article  CAS  Google Scholar 

  10. S. Awad, S. El-Gamal, A.M. El Sayed, E.E. Abdel-Hady, Characterization, optical, and nanoscale free volume properties of Na-CMC/PAM/CNT nanocomposites. Polym. Adv. Technol. 31(1), 114–125 (2020). https://doi.org/10.1002/pat.4753

    Article  CAS  Google Scholar 

  11. G. Burwell, N. Burridge, E. Bond, W. Li, P. Meredith, A. Armin, Parameterization of metallic grids on transparent conductive electrodes for the scaling of organic solar cells. Adv Electron Mater 7(6), 2100192 (2021). https://doi.org/10.1002/aelm.202100192

    Article  CAS  Google Scholar 

  12. A.K. Gupta, M. Bafna, Y.K. Vijay, Study of optical properties of potassium permanganate ($$\hbox {KMnO}_{4}$$) doped poly(methylmethacrylate) (PMMA) composite films. Bull. Mater. Sci. 41(6), 160 (2018). https://doi.org/10.1007/s12034-018-1654-7

    Article  CAS  Google Scholar 

  13. A.Y. Yassin, Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications. J. Mater. Sci.-Mater. Electron. 34(1), 46 (2023). https://doi.org/10.1007/s10854-022-09402-3

    Article  CAS  Google Scholar 

  14. M.A. Morsi, R.A. Pashameah, K. Sharma, E. Alzahrani, M.O. Farea, A.A. Al-Muntaser, Hybrid MWCNTs/Ag nanofiller reinforced PVP/CMC blend-based polymer nanocomposites for multifunctional optoelectronic and nanodielectric applications. J. Polym. Environ. (2022). https://doi.org/10.1007/s10924-022-02656-2

    Article  Google Scholar 

  15. Y. Chen, R.S. Carmichael, T.B. Carmichael, Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl. Mater. Interfaces. 11(34), 31210–31219 (2019). https://doi.org/10.1021/acsami.9b11149

    Article  CAS  Google Scholar 

  16. A.Y. Yassin, A.M. Abdelghany, M.M. Shaban, Y.M. Abdallah, Synthesis, characterization and electrochemical behavior for API 5L X70 carbon steel in 5% sulfamic acid medium using PVVH/PEMA blend filled with gold nanoparticles. Colloids Surf A 635, 128115 (2022). https://doi.org/10.1016/j.colsurfa.2021.128115

    Article  CAS  Google Scholar 

  17. R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J.G. Zarbin, ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv. Funct. Mater. 23(12), 1490–1499 (2013). https://doi.org/10.1002/adfm.201201878

    Article  CAS  Google Scholar 

  18. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010). https://doi.org/10.1021/nn1000035

    Article  CAS  Google Scholar 

  19. S. Maity, S. Pal, H. Parvej, N. Das, N. Sepay, M. Sarkar, U.C. Halder, Facile synthesis and characterization of beta lactoglobulin–copper nanocomposites having antibacterial applications. RSC Adv. 6(88), 85340–85346 (2016). https://doi.org/10.1039/C6RA14162E

    Article  CAS  Google Scholar 

  20. S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci. 91, 141–168 (2019). https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  21. O.O. Alameer, A. Timoumi, N. El Guesmi, S.N. Alamri, W. Belhadj, K. Althagafy, S.A. Ahmed, Expoloriting of graphene oxide for improving physical properties of TiO2(NPs): toward photovoltaic devices and wastewater remediation approaches. Eur Phys J Plus 137(10), 1160 (2022). https://doi.org/10.1140/epjp/s13360-022-03289-z

    Article  CAS  Google Scholar 

  22. N.F. Ab Ghani, M.S.Z. Mat Desa, M. Yusop, M. Bijarimi, A. Ramli, M.F. Ali, Mechanical properties of styrene butadiene rubber toughened graphene reinforced polystyrene. IOP Conf Ser: Mater Sci Eng 736(5), 052010 (2020). https://doi.org/10.1088/1757-899X/736/5/052010

    Article  CAS  Google Scholar 

  23. E. Arda, Ö.B. Mergen, G.A. Evingür, Electrical, optical and mechanical properties of PS/GNP composite films. Phase Transitions 91(8), 887–900 (2018). https://doi.org/10.1080/01411594.2018.1506879

    Article  CAS  Google Scholar 

  24. Y. Ma, Y. Chen, J. Huang, Z. Zhang, D. Zhao, X. Zhang, B. Zhang, A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method. Chem. Pap. 74(2), 471–483 (2020). https://doi.org/10.1007/s11696-019-00888-6

    Article  CAS  Google Scholar 

  25. S. Sarikaya, T.C. Henry, M. Naraghi, Graphene size and morphology: peculiar effects on damping properties of polymer nanocomposites. Exp. Mech. 60(6), 753–762 (2020). https://doi.org/10.1007/s11340-020-00592-7

    Article  CAS  Google Scholar 

  26. A. Fahmy, J. Friedrich, Degradation behavior of thin polystyrene films on exposure to Ar plasma and its emitted radiation. J. Adhes. Sci. Technol. 27(3), 324–338 (2013). https://doi.org/10.1080/01694243.2012.705528

    Article  CAS  Google Scholar 

  27. J.A. Yabagi, M.I. Kimpa, M.N. Muhammad, N. Nayan, Z. Embong, M.A. Agam, Nanofabrication process by reactive ion etching of polystyrene nanosphere on silicon surface. J. Sci. Technol. 9(3), 145–153 (2017)

  28. N. Farman, M. Mumtaz, M.A. Mahmood, S.D. Khan, M.A. Zia, M. Raffi, M. Ahmed, I. Ahmad, Investigation of optical and dielectric properties of polyvinyl chloride and polystyrene blends in terahertz regime. Opt. Mater. 99, 109534 (2020). https://doi.org/10.1016/j.optmat.2019.109534

    Article  CAS  Google Scholar 

  29. V. Chavan, J. Anandraj, G.M. Joshi, M.T. Cuberes, Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites. J. Mater. Sci.-Mater. Electron. 28(21), 16415–16425 (2017). https://doi.org/10.1007/s10854-017-7552-8

    Article  CAS  Google Scholar 

  30. Q.-S. Chen, Z.-N. Xu, S.-Y. Peng, Y.-M. Chen, D.-M. Lv, Z.-Q. Wang, J. Sun, G.-C. Guo, One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation. J. Power Sources 282, 471–478 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.042

    Article  CAS  Google Scholar 

  31. C. Liang, M. Hamidinejad, L. Ma, Z. Wang, C.B. Park, Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 156, 58–66 (2020). https://doi.org/10.1016/j.carbon.2019.09.044

    Article  CAS  Google Scholar 

  32. A. Reznickova, M. Orendac, Z. Kolska, E. Cizmar, M. Dendisova, V. Svorcik, Copper nanoparticles functionalized PE: preparation, characterization and magnetic properties. Appl. Surf. Sci. 390, 728–734 (2016). https://doi.org/10.1016/j.apsusc.2016.08.171

    Article  CAS  Google Scholar 

  33. M.A. Morsi, M. Abdelaziz, A.H. Oraby, I. Mokhles, Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solids 125, 103–114 (2019). https://doi.org/10.1016/j.jpcs.2018.10.009

    Article  CAS  Google Scholar 

  34. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos Part B 173, 106957 (2019). https://doi.org/10.1016/j.compositesb.2019.106957

    Article  CAS  Google Scholar 

  35. A.A. Al-Muntaser, H.R. Alamri, K. Sharma, S. Eltahir, M.M. Makhlouf, Role of rubrene additive for reinforcing the structural, optical, and dispersion properties of polyvinyl alcohol films towards optoelectronic applications. Opt. Mater. 128, 112465 (2022). https://doi.org/10.1016/j.optmat.2022.112465

    Article  CAS  Google Scholar 

  36. R.J. Klein, D.A. Fischer, J.L. Lenhart, Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge x-ray absorption fine structure and contact angle. Langmuir 24(15), 8187–8197 (2008). https://doi.org/10.1021/la800134u

    Article  CAS  Google Scholar 

  37. T. Li, C. Zhou, M. Jiang, UV absorption spectra of polystyrene. Polym. Bull. 25(2), 211–216 (1991). https://doi.org/10.1007/BF00310794

    Article  CAS  Google Scholar 

  38. A.A. Al-Muntaser, R.A. Pashameah, E. Alzahrani, S.A. AlSubhi, A.E. Tarabiah, Tuning structural, optical, and dispersion functions of polystyrene via addition of meso-tetraphenylporphine manganese (III) chloride towards optoelectronic applications. Opt. Mater. 135, 113333 (2023). https://doi.org/10.1016/j.optmat.2022.113333

    Article  CAS  Google Scholar 

  39. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10(2), 607–613 (2010). https://doi.org/10.1016/j.cap.2009.08.005

    Article  Google Scholar 

  40. H. Chandrappa, R.F. Bhajantri, Ranjitha, P.N. Shwetha, Simple fabrication of PVA-ATE (Amaranthus tricolor leaves extract) polymer biocomposites: an efficient UV-Shielding material for organisms in terrestrial and aquatic ecosystems. Opt. Mater. 109, 110204 (2020). https://doi.org/10.1016/j.optmat.2020.110204

    Article  CAS  Google Scholar 

  41. K. Almashhori, T.T. Ali, A. Saeed, R. Alwafi, M. Aly, F.E. Al-Hazmi, Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J. Chem. 44(2), 562–570 (2020). https://doi.org/10.1039/C9NJ03258D

    Article  CAS  Google Scholar 

  42. I.S. Elashmawi, A.A. Al-Muntaser, A.M. Ismail, Structural, optical, and dielectric modulus properties of PEO/PVA blend filled with metakaolin. Opt. Mater. 126, 112220 (2022). https://doi.org/10.1016/j.optmat.2022.112220

    Article  CAS  Google Scholar 

  43. U. Kiran John, S. Mathew, Optical and dielectric investigations on ag CdZnTe hybrid polyvinyl alcohol freestanding films. J Non Cryst Solids 577, 121 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121321

    Article  CAS  Google Scholar 

  44. V. Dimitrov, T. Komatsu, Classification of oxide glasses: a polarizability approach. J. Solid State Chem. 178(3), 831–846 (2005). https://doi.org/10.1016/j.jssc.2004.12.013

    Article  CAS  Google Scholar 

  45. S. Sumimiya, T. Nanba, Y. Miura, S. Sakida, Optical properties of Bi2O3-La2O3-Al2O3-B2O3 glasses. Adv. Glass Opt. Mater. II 197, 127–133 (2006)

  46. H. Yoon, J. Lee, D.W. Park, C.K. Hong, S.E. Shim, Preparation and electrorheological characteristic of CdS/Polystyrene composite particles. Colloid. Polym. Sci. 288(6), 613–619 (2010). https://doi.org/10.1007/s00396-009-2174-1

    Article  CAS  Google Scholar 

  47. X. Song, Z. Dai, X. Xiao, W. Li, X. Zheng, X. Shang, X. Zhang, G. Cai, W. Wu, F. Meng, C. Jiang, Formation of carbonized polystyrene sphere/hemisphere shell arrays by ion beam irradiation and subsequent annealing or chloroform treatment. Sci. Rep. 5(1), 17529 (2015). https://doi.org/10.1038/srep17529

    Article  CAS  Google Scholar 

  48. T. Uyar, R. Havelund, J. Hacaloglu, X. Zhou, F. Besenbacher, P. Kingshott, The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning. Nanotechnology 20(12), 125605 (2009). https://doi.org/10.1088/0957-4484/20/12/125605

    Article  CAS  Google Scholar 

  49. S.R. Alharbi, M. Alhassan, O. Jalled, S. Wageh, A. Saeed, Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J. Mater. Sci. 53(16), 11584–11594 (2018). https://doi.org/10.1007/s10853-018-2458-2

    Article  CAS  Google Scholar 

  50. F. Parodi, 19 - Physics and chemistry of microwave processing, in Comprehensive polymer science and supplements. ed. by G. Allen, J.C. Bevington (Pergamon, Amsterdam, 1989), pp.669–728

    Chapter  Google Scholar 

  51. J. Ilic, Wood: electrical properties, in Encyclopedia of materials: science and technology. ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, Oxford, 2001), pp.9629–9633

    Chapter  Google Scholar 

  52. A. Saeed, A.Y. Madkhli, M. Al-Dossari, F. Abolaban, Electrical and dielectric properties of composites composed of natural quartz with aluminum. SILICON 14(15), 9517–9531 (2022). https://doi.org/10.1007/s12633-022-01713-8

    Article  CAS  Google Scholar 

  53. A. Saeed, M.S. Al-Buriahi, M.A.N. Razvi, N. Salah, F.E. Al-Hazmi, Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. J. Mater. Sci.-Mater. Electron. 32(2), 2075–2087 (2021). https://doi.org/10.1007/s10854-020-04974-4

    Article  CAS  Google Scholar 

  54. R. Alwafi, A. Saeed, Single-walled carbon nanotubes in nanosized basalts as nanocomposites: the electrical/dielectric properties and electromagnetic interference shielding performance. J. Inorg. Organomet. Polym. Mater. 32(11), 4340–4358 (2022). https://doi.org/10.1007/s10904-022-02450-6

    Article  CAS  Google Scholar 

  55. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K. Khadheer Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur. Polym. J. 76, 14–27 (2016). https://doi.org/10.1016/j.eurpolymj.2016.01.022

    Article  CAS  Google Scholar 

  56. Ö.B. Mergen, E. Umut, E. Arda, S. Kara, A, comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites. Polym. Test. 90, 106682 (2020). https://doi.org/10.1016/j.polymertesting.2020.106682

    Article  CAS  Google Scholar 

  57. N.S. Alghunaim, Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend. Results Phys 9, 1136–1140 (2018)

    Article  Google Scholar 

  58. A. Saeed, S.O. Adewuyi, H.A.M. Ahmed, S.R. Alharbi, S.E. Al Garni, F. Abolaban, Electrical and dielectric properties of the natural calcite and quartz. SILICON 14(10), 5265–5276 (2022). https://doi.org/10.1007/s12633-021-01318-7

    Article  CAS  Google Scholar 

  59. A.R. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Effects of graphene nanoplatelet size and surface area on the ac electrical conductivity and dielectric constant of epoxy nanocomposites. Polymers 10(5), 477 (2018)

    Article  Google Scholar 

  60. M.S. Meikhail, A.H. Oraby, M.M. El-Nahass, H.M. Zeyada, A.A. Al-Muntaser, Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films. Phys. B 539, 1–7 (2018). https://doi.org/10.1016/j.physb.2018.03.045

    Article  CAS  Google Scholar 

  61. J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47(5), 1311–1320 (2009). https://doi.org/10.1016/j.carbon.2009.01.014

    Article  CAS  Google Scholar 

  62. K. Mosnáčková, Z. Špitálský, J. Kuliček, J. Prokeš, A. Skarmoutsou, C.A. Charitidis, M. Omastová, Influence of preparation methods on the electrical and nanomechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotubes composites. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41721

    Article  Google Scholar 

  63. G. George, S.M. Simon, V.P. Prakashan, M.S. Sajna, M. Faisal, R. Wilson, A. Chandran, P.R. Biju, C. Joseph, N.V. Unnikrishnan, Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties. RSC Adv. 8(53), 30412–30428 (2018). https://doi.org/10.1039/C8RA05007D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

“The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4320141DSR68)”.

Funding

This study was supported by Deanship of Scientific Research at Umm Al-Qura University, 22UQU4320141DSR68.

Author information

Authors and Affiliations

Authors

Contributions

AAA-M: Supervision, conceptualization, methodology, resources, software, data curation, writing—original draft, review & editing formal analysis, validation and visualization. RAP: Project administration, methodology, review & editing, formal analysis, validation and visualization, funding acquisition. AS: Writing, review & editing, resources. RA: Writing, review & editing, resources EA: Methodology, writing, review & editing, formal analysis, validation, and visualization. SAA-S: Original draft, methodology, writing, review & editing, resources, formal analysis. AYY: Supervision, conceptualization, methodology, resources, software, data curation, writing—original draft, review & editing formal analysis, validation and visualization. All authors reviewed the manuscript.

Corresponding author

Correspondence to A. A. Al-Muntaser.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

There is no need for ethical approval for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Muntaser, A.A., Pashameah, R.A., Saeed, A. et al. Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J Mater Sci: Mater Electron 34, 678 (2023). https://doi.org/10.1007/s10854-023-10104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10104-7

Navigation