Skip to main content

Advertisement

Log in

In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A major problem in the field of hard tissue engineering is to develop a biomaterial which could allow the organ to regenerate itself completely by biological fixation. Silicate bioceramics are new hope in this field. Nanocrystalline larnite (Ca2SiO4) was prepared by sol–gel combustion method by using calcium nitrate/eggshell waste. XRD analysis of the synthesized product shows the formation of single phasic larnite and FT-IR spectrum confirms the presence of characteristic functional groups of larnite. In vitro bioactivity of different compositional ratio of larnite/chitosan has been investigated to study the influence of the ratio of constituents of composite on bioactivity. XRD pattern of the composite surface after bioactivity study reveals that the composite which mimics the ratio of bioceramic to biopolymer in natural bone shows good bioactivity and remarkable hydroxyapatite layer deposition. SEM images shows the hydroxyapatite particles deposited on the surface of eggshell derived larnite composite is highly agglomerated with the average particle size of 3–5 nm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  2. Lakshmi R, Velmurugan V, Sasikumar S (2013) Preparation and phase evolution of wollastonite by sol–gel combustion method using sucrose as the fuel. Combust Sci Technol 185(12):1777–1785

    Article  Google Scholar 

  3. Udduttula A, Koppala S, Sasikumar S (2013) Sol–gel combustion synthesis of nanocrystalline wollastonite by using glycine as a fuel and its in vitro bioactivity studies. Trans Ind Ceram Soc 72(4):257–260

    Article  Google Scholar 

  4. Bohner M (2009) Silicon-substituted calcium phosphates—A critical view. Biomaterials 30:6403–6406

    Article  Google Scholar 

  5. Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites: a method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516

    Article  Google Scholar 

  6. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) Structural analysis of Si substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy (XPS). J Mater Sci Mater Med 13(12):1123–1127

    Article  Google Scholar 

  7. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206

    Article  Google Scholar 

  8. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2004) Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials 25:3303

    Article  Google Scholar 

  9. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  Google Scholar 

  10. Salinas AJ, Vallet-Regi M, Izquierdo-barba I (2001) Biomimetic apatite deposition on calcium silicate gel glasses. J Sol–Gel Sci Technol 21:13–25

    Article  Google Scholar 

  11. Martinez A, Izquierdo-Barba I, Vallet-Regi M (2000) Bioactivity of a CaO–SiO2 binary glasses system. Chem Mater 12:3080–3088

    Article  Google Scholar 

  12. Gou Z, Chang J (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 24:93–99

    Article  Google Scholar 

  13. Gou Z, Chang J, Zhai W (2005) Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc 25:1507–1514

    Article  Google Scholar 

  14. Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W, Chang J, Chen L (2011) Mechanical properties and bioactivity of β-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceram Int 37:2459–2465

    Article  Google Scholar 

  15. Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968

    Article  Google Scholar 

  16. Cheng W, Li H, Chang J (2005) Fabrication and characterization of β dicalcium silicate/poly(D, L-lactic acid) composite scaffolds. Mater Lett 59:2214–2218

    Article  Google Scholar 

  17. Sprio S, Tampieri A, Celotti G, Landi E (2009) Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater 2:147–155

    Article  Google Scholar 

  18. Verma N, Kumar V, Bansal MC (2012) Utilization of egg shell waste in cellulose production by Neurospora crassa under wheat bran-based solid state fermentation. Pol J Environ Stud 21(2):491–497

    Google Scholar 

  19. Van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177

    Article  Google Scholar 

  20. Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37(2):207–212

    Article  Google Scholar 

  21. Prabakaran K, Balamurugan A, Rajeswari S (2005) Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci 28(2):115–119

    Article  Google Scholar 

  22. Sasikumar S, Vijayaraghavan R (2006) Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends Biomater Artif Organs 19(2):70–73

    Google Scholar 

  23. Rivera EM, Araiza M, Brostow W, Castano VM, Estrada JRD, Hernandez R, Rodriguez JR (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41:128–134

    Article  Google Scholar 

  24. Goloshchapov DL, Kashkarov VM, Rumyantseva NA, Seredin PV, Lenshin AS, Agapov BL, Domashevskaya EP (2013) Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceram Int 39:4539–4549

    Article  Google Scholar 

  25. Ho W-F, Hsu H-C, Hsu S-K, Hung C-W, Wu S-C (2013) Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int 39:6467–6473

    Article  Google Scholar 

  26. Samal SS, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. J Miner Mater Charact Eng 7(4):355–370

    Google Scholar 

  27. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  Google Scholar 

  28. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211

    Article  Google Scholar 

  29. Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biom 1:3–18

    Google Scholar 

  30. Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) Cell culture test of TCP/CPLA composite. J Biomed Mater Res 48:108–110

    Article  Google Scholar 

  31. Laurencin CT, Attawia MA, Elgendy HE, Herbert KM (1996) Tissue engineered bone regeneration using degradable polymers: the formation of mineralized matrices. Bone 19:S93–S99

    Article  Google Scholar 

  32. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evaluation of novel bioactive composites based on Bioglass (R)-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A 67A:1401–1411

    Article  Google Scholar 

  33. Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500

    Article  Google Scholar 

  34. Stamboulis AG, Boccaccini AR, Hench LL (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4:105–109

    Article  Google Scholar 

  35. Chen Q, Zhu C, Thouas GA (2012) Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 1:2

    Article  Google Scholar 

  36. Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214

    Article  Google Scholar 

  37. Shogren RL, Bagley EB (1999) Natural polymers as advanced materials: some research needs and directions. In: Iman SH, Greene RV, Zaidi BR (ed), Biopolymers. Utilizing nature’s advanced materials, ACS symposium series 723. Oxford University Press, Cary

  38. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Article  Google Scholar 

  39. Han B, Huang LLH, Cheung D, Cordoba F, Nimni M (1999) In: Zilla P, Greisler HP (eds) Polypeptide growth factors with a collagen binding domain: Their potential for tissue repair and organ regeneration. Tissue engineering of vascular prosthetic grafts. RG Landes, Austin

    Google Scholar 

  40. Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M et al (2004) Influence of different collagen species on physicochemical properties of crosslinked collagen matrices. Biomaterials 25(14):2831–2841

    Article  Google Scholar 

  41. Holme HK, Davidsen L, Kristiansen A, Smidsrod O (2008) Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664

    Article  Google Scholar 

  42. Suh JKF, Matthew HWT (2000) Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  Google Scholar 

  43. Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93:256–262

    Article  Google Scholar 

  44. Huang D, Zuo Y, Zou Q, Zhang L, Li J, Cheng L, Shen J, Li Y (2011) Antibacterial chitosan coating on nano-hydroxyapatite/Polyamide66 porous bone scaffold for drug delivery. J Biomater Sci Polym Ed 22(7):931–944

    Article  Google Scholar 

  45. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    Google Scholar 

  46. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979

    Article  Google Scholar 

  47. Krithiga G, Sastry TP (2011) Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. Bull Mater Sci 34(1):177–181

    Article  Google Scholar 

  48. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  49. Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids 120:138–151

    Article  Google Scholar 

  50. Cho S-B, Nakanishi K, Kokubo T, Soga N (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78(7):1769–1774

    Article  Google Scholar 

  51. Nalwa HS (2003) Handbook of organic—inorganic hybrid materials and nanocomposites Vol 1. Hybrid materials. American Scientific Publishers

  52. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  53. Bhatkar VB, Bhatkar NV (2011) Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mater Sci 34(6):1281–1284

    Article  Google Scholar 

  54. Klug H, Alexander L (1962) X-Ray diffraction procedures. Wiley, New York

    Google Scholar 

  55. Kalinkin AM, Boldyrev VV, Politovaa AA, Kalinkina EV, Makarov VN, Kalinnikov VT (2003) Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Phys Chem 29(4):410–414

    Article  Google Scholar 

  56. Tilekar G, Shinde K, Kale K, Raskar R, Gaikwad A (2011) The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate. Front Chem Sci Eng 5(4):477–491

    Article  Google Scholar 

  57. Yarlagadda PK, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Bio-Med Mater Eng 15(3):159–177

    Google Scholar 

  58. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442

    Article  Google Scholar 

  59. Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res Part B 83(1):153–160

    Article  Google Scholar 

  60. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507

    Article  Google Scholar 

  61. Lin K-L, Chang J, Lu J-X, Gao J-H, Zeng Y (2006) Fabrication and characterization of β-Ca3(PO4)2/CaSiO3 composite bioceramics. J Inorg Mater 21(6):1429–1434

    Google Scholar 

  62. Zhao Y, Ning C, Chang J (2009) Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J Sol–Gel Sci Technol 52:69–74

    Article  Google Scholar 

  63. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    Article  Google Scholar 

  64. Kay S, Thapa A, Haberstroh KM, Webster TJ (2002) Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8:753–761

    Article  Google Scholar 

  65. Palin E, Liu HN, Webster TJ (2005) Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 16(9):1828–1835

    Article  Google Scholar 

  66. Alves NM, Leonor IB, Azevedo HS, Reis RL, Mano JF (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20:2911–2921

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to VIT University for providing necessary facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swamiappan Sasikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R., Koppala, S., Srivastava, A. et al. In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study. J Sol-Gel Sci Technol 74, 631–640 (2015). https://doi.org/10.1007/s10971-015-3642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3642-3

Keywords

Navigation