Skip to main content

Advertisement

Log in

Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 11 July 2009

Abstract

Inspired from the success of silicate-based bioactive glasses and glass-ceramics, alkali or/and alkali earth-containing silicate ceramics have attracted much attention in recent years. In the present paper, pure Na2CaSiO4 was successfully synthesized by a sol–gel method and its in vitro biological behaviors were investigated. The results showed that Na2CaSiO4 could quickly induce bone-like apatite formation in simulated body fluid through a silicon-rich layer. The degradation of Na2CaSiO4 in phosphorus buffered saline (PBS) was controlled by two processes: dissolution and back precipitation. Na2CaSiO4 even had the ability to induce apatite formation in PBS, which further confirmed its high apatite-inducing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15(4):543–562. doi:10.1163/156856204323005352

    Article  PubMed  CAS  Google Scholar 

  2. Leu A, Stiege SM, Dayton P, Ferrara KW, Leach JK (2009) Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng 15A:877–885

    Google Scholar 

  3. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res 24(3):331–343. doi:10.1002/jbm.820240306

    Article  PubMed  CAS  Google Scholar 

  4. Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1728

    Article  CAS  Google Scholar 

  5. Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res B Appl Biomater 83B(1):153–160. doi:10.1002/jbm.b.30779

    Article  CAS  Google Scholar 

  6. Wu CT, Chang J, Ni SY, Wang JY (2006) In vitro bioactivity of akermanite ceramics. J Biomed Mater Res 76A(1):73–80. doi:10.1002/jbm.a.30496

    Article  CAS  Google Scholar 

  7. Du RL, Chang J (2004) Preparation and characterization of bioactive sol–gel-derived Na2Ca2Si3O9. J Mater Sci: Mater Med 15(12):1285–1289. doi:10.1007/s10856-004-5736-2

    Article  CAS  Google Scholar 

  8. Cerruti M, Sahai N (2006) Silicate biomaterials for orthopaedic and dental implants. Rev Miner Geochem 64(9):283–313. doi:10.2138/rmg.2006.64.9

    Article  CAS  Google Scholar 

  9. Zimmer J, Fechner JH, Fechner J Glass ceramic powder based on alkali-alkaline earth and alkaline earth silicates, US2005142077-A1

  10. El-Ghannam A, Ning C, Mehta J (2004) Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone marrow cell delivery. J Biomed Mater Res 71A:377–390. doi:10.1002/jbm.a.30128

    Article  CAS  Google Scholar 

  11. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  12. Rhee SH, Choi JY, Kim HM (2002) Preparation of a bioactive and degradable poly (ε-caprolactone)/silica hybrid through a sol–gel method. Biomaterials 23(24):4915–4921. doi:10.1016/S0142-9612(02)00251-X

    Article  PubMed  CAS  Google Scholar 

  13. Xiong L, Zhao Z, Leng Y (2007) Biomimetic calcium phospahte coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng C 27:700–708. doi:10.1016/j.msec.2006.06.030

    Article  CAS  Google Scholar 

  14. El-Ghannam A, Ning CQ (2006) Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res 76A(2):386–397. doi:10.1002/jbm.a.30517

    Article  CAS  Google Scholar 

  15. Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514. doi:10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Shanghai Pujiang Program (07pj14092) and National Natural Science Foundation of China (50732002; 30730034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congqin Ning.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10971-009-2038-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Ning, C. & Chang, J. Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J Sol-Gel Sci Technol 52, 69–74 (2009). https://doi.org/10.1007/s10971-009-2006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2006-2

Keywords

Navigation