Skip to main content
Log in

The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The capture of CO2 by transition metal (Mn, Ni, Co and Zn) aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate was carried out at pre- and post-combustion temperatures. The prepared metal adsorbents were characterized by Xray diffraction (XRD), scanning electron microscope (SEM), surface area analysis and acidity/alkalinity measurements. The different experimental variables affecting the adsorbents ability to capture CO2, such as the mol ratio of metal ions, the pressure of CO2, the exposure time and the temperature of the adsorbent were also investigated. Calcium zirconate captured 13.85 wt-% CO2 at 650°C and 2.5 atm and calcium silicate captured 14.31 wt-%at 650°C. Molecular sieves (13X) and carbon can only capture a negligible amount of CO2 at high temperatures (300°C–650°C). However, the mixed metal oxides captured reasonable amount of CO2 at these higher temperatures. In addition, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate adsorbents captured CO2 at both pre and post-combustion temperatures. The trend for the amount of captured carbon dioxide over the adsorbents was calcium aluminate < lithium zirconate < calcium zirconate < calcium silicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkholzer J T, Zhou Q, Tsang C F. Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in stratified systems. International Journal of Greenhouse Gas Control, 2009, 3(2): 181–194

    Article  CAS  Google Scholar 

  2. Nathwani J, Ng A. Paths to sustainable energy. Croatia: InTech publisher, 2010, 461–482

    Google Scholar 

  3. Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035–4042

    Article  CAS  Google Scholar 

  4. Mosqueda H A, Vazquez C, Bosch P, Pfeiffer H. Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). Chemistry of Materials, 2006, 18: 2307–2310

    Article  CAS  Google Scholar 

  5. López-Ortiz A, Perez Rivera N G, Reyes Rojas A, Lardizabal Gutierrez D. Novel carbon dioxide solid acceptors using sodium containing oxides. Separation Science and Technology, 2005, 39(15): 3559–3572

    Article  Google Scholar 

  6. Douglas A, Costas T. Separation of CO2 from flue gas: a review. Separation Science and Technology, 2005, 40(1): 321–348

    Article  Google Scholar 

  7. Hutson N D, Attwood B C. High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 2008, 14(6): 781–789

    Article  CAS  Google Scholar 

  8. Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTIcs) at high temperatures. Industrial & Engineering Chemistry Research, 2001, 40(1): 204–209

    Article  CAS  Google Scholar 

  9. Iwan A, Stephenson H, Ketchie W C, Lapkin A A. High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal, 2009, 146(2): 249–258

    Article  CAS  Google Scholar 

  10. Ida J I, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology, 2003, 37(9): 1999–2004

    Article  CAS  Google Scholar 

  11. Avalos-Rendón T, Casa-Madrid J, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. The Journal of Physical Chemistry A, 2009, 113(25): 6919–6923

    Article  Google Scholar 

  12. Khomane R B, Sharma B K, Saha S, Kulkarni B D. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chemical Engineering Science, 2006, 61(10): 3415–3418

    Article  CAS  Google Scholar 

  13. Wang M, Lee C G. Adsorption of CO2 on CaSiO3 at high temperature. Energy Conversion and Management, 2009, 50(3): 636–638

    Article  Google Scholar 

  14. Pfeiffer H, Bosch P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chemistry of Materials, 2005, 17(7): 1704–1710

    Article  CAS  Google Scholar 

  15. Kwang B Y, Eriksen D ø. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology, 2006, 41(2): 283–296

    Article  Google Scholar 

  16. Kalinkin AM, Boldyrev V V, Politov A A, Kalinkina E V, Makarov V N, Kalinnikov V T. Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Physics and Chemistry, 2003, 29(4): 410–414

    Article  CAS  Google Scholar 

  17. Korake P V, Gaikwad A G. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Frontiers in Chemical Science and Engineering, 2011, 5(2): 215–226

    Article  CAS  Google Scholar 

  18. D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082

    Article  Google Scholar 

  19. Cho J S, Kim S M, Chun H D, Han G W, Lee C H. Carbon dioxide capture with accelerated carbonation of industrial combustion waste. International Journal of Chemical Engineering and Applications, 2011, 2(1): 60–65

    Google Scholar 

  20. Ochoa-Fernández E, Rønning M, Grande T, Chen D. Synthesis and CO2 capture properties of nan-ocrystalline lithium zirconate. Chemistry of Materials, 2006, 18(25): 6037–6046

    Article  Google Scholar 

  21. Fauth D J, Frommell E A, Hoffman J S, Reasbeck R P, Pennline H W. Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Processing Technology, 2005, 86(14–15): 1503–1521

    Article  CAS  Google Scholar 

  22. Wang M, Lee C G, Ryu C K. CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy, 2008, 33(21): 6368–6372

    Article  CAS  Google Scholar 

  23. Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55

    Article  CAS  Google Scholar 

  24. Galven C, Fourquet J L, Suard E, Crosnier-Lopez M P, Le Berre F. Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7. Dalton Transactions (Cambridge, England), 2010, 39(17): 4191–4197

    Article  CAS  Google Scholar 

  25. Ida J, Xiong R, Lin Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology, 2004, 36(1): 41–51

    Article  CAS  Google Scholar 

  26. Wang K, Guo X, Zhao P, Zheng C. Cyclic CO2 capture of CaO-based sorbent in the presence of meta-kaolin and aluminum (hydro) oxides. Applied Clay Science, 2010, 50(1): 41–46

    Article  Google Scholar 

  27. Wang J, Manovic V, Wu Y, Anthony E J. A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes. Applied Energy, 2010, 87(4): 1453–1458

    Article  CAS  Google Scholar 

  28. Manovic V, Anthony E J. Reactivation and remaking of calcium aluminate pellets for CO2 capture. Fuel, 2011, 90(1): 233–239

    Article  CAS  Google Scholar 

  29. Florin N, Fennell P. Synthetic CaO-based sorbent for CO2 capture. Energy Procedia, 2011, 4: 830–838

    Article  CAS  Google Scholar 

  30. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Institution of Chemical Engineers Trans IChemE, 1999, 77: 63–68

    Google Scholar 

  31. Yuhua D. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: a firstprinciples density-functional theory and phonon dynamics approach. Journal of Renewable Sustainable Energy, 2011, 3, 013102-2–19

    Google Scholar 

  32. Pacciani R, Müller C R, Davidson J F, Dennis J S, Hayhurst A N. Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed. The Canadian Journal of Chemical Engineering, 2008, 86(3): 356–366

    Article  CAS  Google Scholar 

  33. Fauth D J, Hoffman J S, Pennline HW. Dry regenerable sorbents for the separation and capture of CO2 from large point sources. International Journal of Environmental Technology and Management, 2004, 4: 68–81

    CAS  Google Scholar 

  34. Hernández L O G, Gutiérrez D L, Collins-Martínez V, Ortiz A L. Synthesis, characterization and high temperature CO2 capture evaluation of Li2ZrO3-Na2ZrO3 mixtures. Journal of New Materials for Electrochemical Systems, 2008, 11: 137–142

    Google Scholar 

  35. Marini L. Geological sequestration of carbon dioxide, thermodynamics, kinetics, and reaction path modeling. Elsevier, 2006, 11, 1–453

    Google Scholar 

  36. Jambor J L, Sabina A P, Roberts A C, Sturman B D. Strontiodresserite, a new Sr-Al carbonate from Montreal Island, Quebec. Canadian Mineralogist, 1977, 15: 405–407

    Google Scholar 

  37. Roberts A C. The space group of strontiodresserite. Geological Survey of Canada Paper, 1978, 78-1B, 180

    CAS  Google Scholar 

  38. Suzuki Y, Morgan P E D, Ohji T. New uniformly porous CaZrO3/MgO composites with three-dimensional network structure from natural dolomite. Journal of the American Ceramic Society, 2000, 83(8): 2091–2093

    Article  CAS  Google Scholar 

  39. Backs S J, Etsell T H. Electrical properties of transition metal aluminate spinels. Solid State Ionics, 1992, 53–56: 1305–1310

    Article  Google Scholar 

  40. Lucovsky G, Whitten J L, Zhang Y. A molecular orbital model for the electronic structure of transition metal atoms in silicate and aluminate alloys. Microelectronic Engineering, 2001, 59(1–4): 329–334

    Article  CAS  Google Scholar 

  41. Al-Raihani H, Durand B, Chassagneux F, Inman D. A novel preparation of calcia fully stabilized zirconia from molten alkalimetal nitrate. Journal of Materials Chemistry, 1996, 6(3): 495–500

    Article  CAS  Google Scholar 

  42. Brixner L H, Babcock K. Inorganic single crystals from reactions in fused salts. Materials Research Bulletin, 1968, 3(10): 817–824

    Article  CAS  Google Scholar 

  43. Bi Z, Zhang R, Wang X, Gu S, Shen B, Shi Y, Liu Z, Zheng Y. Synthesis of zinc aluminate spinel film through the solid-phase reaction between zinc oxide film and α-alumina substrate. Journal of the American Ceramic Society, 2003, 86(12): 2059–2062

    Article  CAS  Google Scholar 

  44. Bakker W J W, Kapteijn F, Moulijn J A. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production: conceptual process application to coal gas cleaning. Chemical Engineering Journal, 2003, 96: 223–235

    Article  CAS  Google Scholar 

  45. Serna-Guerrero R, Belmabkhout Y, Sayari A. Triamine-grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies. Adsorption, 2010, 16(6): 567–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abaji Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilekar, G., Shinde, K., Kale, K. et al. The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate. Front. Chem. Sci. Eng. 5, 477–491 (2011). https://doi.org/10.1007/s11705-011-1107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-011-1107-y

Keywords

Navigation