Skip to main content
Log in

Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The hydrated manganese dioxide (HMO) was synthesized by hydrothermal process using MnSO4 and KMnO4. The adsorption of HMO for Th(IV) and U(VI) were investigated by batch static adsorption experiments. The HMO and MnO2 were characterized by FT-IR, XRD and SEM. At the same time, the adsorption mechanism is discussed. The adsorption process was in line with the pseudo-second-order kinetic model and Langmuir isothermal model. The maximum adsorption capacities were Th (T = 308 K, C0 = 200 mg L−1, qmax = 218.34 mg g−1) and U (T = 308 K, C0 = 200 mg L−1, qmax = 55.19 mg g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xiu T, Liu Z, Wang Y, Wu P, Du Y, Cai Z (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319(3):1059–1067

    Article  CAS  Google Scholar 

  2. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    Article  CAS  PubMed  Google Scholar 

  3. Gao Y, Chen K, Tan X, Wang X, Alsaedi A, Hayat T, Chen C (2017) Interaction mechanism of Re(VII) with zirconium dioxide nanoparticles archored onto reduced graphene oxides. ACS Sustain Chem Eng 5(3):2163–2171

    Article  CAS  Google Scholar 

  4. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  5. Linghu W, Yang H, Sun Y, Sheng G, Huang Y (2017) One-pot synthesis of LDH/GO composites as highly effective adsorbents for decontamination of U(VI). ACS Sustain Chem Eng 5(6):5608–5616

    Article  CAS  Google Scholar 

  6. Song S, Huang S, Zhang R, Chen Z, Wen T, Wang S, Hayat T, Alsaedi A, Wang X (2017) Simultaneous removal of U(VI) and humic acid on defective TiO2−x investigated by batch and spectroscopy techniques. Chem Eng J 325:576–587

    Article  CAS  Google Scholar 

  7. Raju ChS, Subramanian MS (2005) DAPPA grafted polymer: an efficient solid phase extractant for U(VI), Th(IV) and La(III) from acidic waste streams and environmental samples. Talanta 67(1):81–89

    Article  CAS  PubMed  Google Scholar 

  8. Pan N, Li L, Ding J, Wang R, Jin Y, Xia C (2017) A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). J Colloid Interfaces Sci 508:303–312

    Article  CAS  Google Scholar 

  9. Li X, Zhao K, You C, Linghu W, Ye F, Yu M, Alsaedi A, Hayat T, Pan H, Luo J, Ren X (2018) Nanocomposites of polyaniline functionalized graphene oxide: synthesis and application as a novel platform for removal of Cd(II), Eu(III), Th(IV) and U(VI) in water. J Radioanal Nucl Chem 315(3):509–522

    Article  CAS  Google Scholar 

  10. Nilchi A, Shariati Dehaghan T, Rasouli Garmarodi S (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71

    Article  CAS  Google Scholar 

  11. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J Environ Radioact 116:141–147

    Article  CAS  PubMed  Google Scholar 

  12. Al Abdullah J, Al Lafi AG, Wa Al Masri, Amin Y, Alnama T (2016) Adsorption of cesium, cobalt, and lead onto a synthetic nano manganese oxide: behavior and mechanism. Water Air Soil Pollut 227:1–14

    Article  CAS  Google Scholar 

  13. Al Lafi AG, Ajji Z (2017) Radiation grafting of acrylic acid and N-vinyl imidazole onto polyethylene films for lead-ion removal: a two-dimensional correlation infrared spectroscopy investigation. J Appl Polym Sci 134:44781

    Google Scholar 

  14. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta 68(4):1047–1064

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Lee SW, Catalano JG, Lezama-Pacheco JS, Bargar JR, Tebo BM, Giammar DE (2013) Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47(2):850–858

    Article  CAS  PubMed  Google Scholar 

  16. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634

    Article  CAS  PubMed  Google Scholar 

  17. Johnson BE, Santschi PH, Chuang CY, Otosaka S, Addleman RS, Douglas M, Rutledge RD, Chouyyok W, Davidson JD, Fryxell GE, Schwantes JM (2012) Collection of lanthanides and actinides from natural waters with conventional and nanoporous sorbents. Environ Sci Technol 46(20):11251–11258

    Article  CAS  PubMed  Google Scholar 

  18. Jiang D, Liu L, Pan N, Yang F, Li S, Wang R, Wyman IW, Jin Y, Xia C (2015) The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem Eng J 271:147–154

    Article  CAS  Google Scholar 

  19. Hosseini MS, Abedi F (2015) Comparison of adsorption behavior of Th(IV) and U(VI) on mixed-ligands impregnated resin containing antraquinones with that conventional one. J Radioanal Nucl Chem 303:2173–2183

    Article  CAS  Google Scholar 

  20. Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53(13):2016–2033

    Article  CAS  Google Scholar 

  21. Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J, Li W, Gomez S, Suib SL (2005) Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J Am Chem Soc 127:14184–14185

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Mu J (2007) Hydrothermal synthesis of γ-MnOOH nanowires and α-MnO2 sea urchin-like clusters. Solid State Commun 141(8):427–430

    Article  CAS  Google Scholar 

  24. Zhang J, Chu W, Jiang J, Zhao XS (2011) Synthesis, characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology 22:1–9

    Google Scholar 

  25. Huang G, Peng W, Yang S (2018) Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. J Radioanal Nucl Chem 317(1):337–344

    Article  CAS  Google Scholar 

  26. Wu P, Wang Y, Hu X, Yuan D, Liu Y, Liu Z (2018) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Chem 319(3):1111–1118

    Article  CAS  Google Scholar 

  27. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234

    Article  CAS  Google Scholar 

  28. Huang Z, Li Z, Zheng L, Zhou L, Chai Z, Wang X, Shi W (2017) Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem Eng J 328:1066–1074

    Article  CAS  Google Scholar 

  29. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides. Spectrochim Acta A 60(3):689–700

    Article  CAS  Google Scholar 

  30. Maiti S, Pramanik A, Mahanty S (2014) Interconnected network of MnO2 nanowires with a ‘cocoon’ like morphology: redox couple mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl Mater Interfaces 6(13):10754–10762

    Article  CAS  PubMed  Google Scholar 

  31. Liao W, Wang H, Li F, Zhao C, Liu J, Liao J, Yang J, Yang Y, Liu N (2019) MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ Sci Pollut Res Int 26(4):3697–3705

    Article  CAS  PubMed  Google Scholar 

  32. Xie X, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12):2365–2373

    Article  CAS  Google Scholar 

  33. Yuan A, Zhang Q (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8(7):1173–1178

    Article  CAS  Google Scholar 

  34. Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium(IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318(2):823–834

    Article  CAS  Google Scholar 

  35. Yin Z, Pan D, Liu P, Wu H, Li Z, Wu W (2018) Sorption behavior of thorium(IV) onto activated bentonite. J Radioanal Nucl Chem 316(1):301–312

    Article  CAS  Google Scholar 

  36. Yu X, Liu Y, Zhou Z, Xiong G, Cao X, Li M, Zhang Z (2014) Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300(3):1235–1244

    Article  CAS  Google Scholar 

  37. Gao Y, Hou D, He DX, Jiang M, Yang XC, Liao S, Zhang W, Yan XM, Tan N (2017) Higher uranium(VI) biosorption capacity and repeated use of PA-ZZF51 prepared by marine mangrove endophytic fungus ZZF51 and phytic acid. J Radioanal Nucl Chem 314(3):1915–1925

    Article  CAS  Google Scholar 

  38. Liu D, Liu Z, Wang C, Lai Y (2016) Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310(3):1131–1137

    Article  CAS  Google Scholar 

  39. Ilaiyaraja P, Deb AKS, Ponraju D, Ali SM, Venkatraman B (2017) Surface engineering of PAMAM-SDB chelating resin with diglycolamic acid (DGA) functional group for efficient sorption of U(VI) and Th(IV) from aqueous medium. J Hazard Mater 328:1–11

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Wang X, Liang H, Tan T, Wu W (2016) Adsorption behavior of Th(IV) onto illite: effect of contact time, pH value, ionic strength, humic acid and temperature. Appl Clay Sci 127–128:35–43

    Google Scholar 

  41. Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138

    Article  CAS  Google Scholar 

  42. Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49

    Article  CAS  PubMed  Google Scholar 

  43. Rouhi Broujeni B, Nilchi A, Hassani AH, Saberi R (2018) Comparative adsorption study of Th4+ from aqueous solution by hydrothermally synthesized iron and aluminum oxide nanoparticles. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1824-6

    Article  Google Scholar 

  44. Gök M, Sert Ş, Özevci G, Eral M (2018) Efficient adsorption of Th(IV) from aqueous solution by modified SBA-15 mesoporous silica. Nucl Sci Technol 29(7):1–9

    Article  Google Scholar 

  45. Li S, Wang L, Peng J, Zhai M, Shi W (2019) Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199

    Article  CAS  Google Scholar 

  46. Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel metal-organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9(41):36026–36037

    Article  CAS  PubMed  Google Scholar 

  47. Dousti Z, Dolatyari L, Yaftian MR, Rostamnia S (2018) Adsorption of Eu(III), Th(IV), and U(VI) by mesoporous solid materials bearing sulfonic acid and sulfamic acid functionalities. Sep Sci Technol 1:1. https://doi.org/10.1080/01496395.2018.1548483

    Article  CAS  Google Scholar 

  48. Elsalamouny AR, Desouky OA, Mohamed SA, Galhoum AA (2016) Evaluation of adsorption behavior for U(VI) and Th(IV) ions onto solidified Mannich type material. J Disper Sci Technol 38(6):860–865

    Article  CAS  Google Scholar 

  49. Khalili FI, Aa Khalifa, Al-Banna G (2016) Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan. J Radioanal Nucl Chem 311(2):1375–1392

    Article  CAS  Google Scholar 

  50. Zhang L, Li Y, Guo H, Zhang H, Zhang N, Hayat T, Sun Y (2019) Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environ Pollut 248:332–338

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Zhu Y, Chew JW (2019) Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. Appl Surf Sci 466:893–902

    Article  CAS  Google Scholar 

  52. Sadeek SA, El-Sayed MA, Amine MM, Abd El-Magied MO (2013) A chelating resin containing trihydroxybenzoic acid as the functional group: synthesis and adsorption behavior for Th(IV) and U(VI) ions. J Radioanal Nucl Chem 299(3):1299–1306

    Article  CAS  Google Scholar 

  53. Zhang J, Guo Z, Li Y, Pan S, Chen X, Xu J (2016) Effect of environmental conditions on the sorption of uranium on Fe3O4@MnO2 hollow spheres. J Mol Liq 223:534–540

    Article  CAS  Google Scholar 

  54. Yang C, Zhong Y, Li L, Ren X, Sun Y, Niu D, Liu Y, Yin M, Zhang D (2018) Lead and uranium sorption characteristics on hydrothermal synthesized delta manganese dioxide. J Radioanal Nucl Chem 317(3):1399–1408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11875105, 21866006, 21601033), and Jiangxi Province Key Subjects Academy and Technique Leaders Funding Project (20172BCB22020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, T., Liu, Z., Yang, L. et al. Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321, 671–681 (2019). https://doi.org/10.1007/s10967-019-06634-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06634-2

Keywords

Navigation