Skip to main content
Log in

Efficient adsorption of Th(IV) from aqueous solution by modified SBA-15 mesoporous silica

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A very effective adsorbent for thorium has been obtained by modification of Santa Barbara Amorphous (SBA-15) using the chelating agent thenoyltrifluoroacetone (TTA). The prepared adsorbent (SBA-15-TTA) was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), surface area, porosity, and zeta potential analyses. We investigated the factors affecting Th(IV) adsorption on TTA-SBA-15, such as initial pH, contact time, temperature, and initial metal concentration. The effective initial pH for adsorption was found to be 4. The binding sites on TTA-SBA-15 adsorbent were saturated using an initial Th(IV) concentration of 100 mg L−1. The DubininRadushkevich isotherm suggested a strong chemical interaction between adsorbent and adsorbate. Contact time and temperature had no significant effect on the adsorption. Therefore, the studies show that TTA-SBA-15 is a promising adsorbent to treat Th(IV)-contaminated effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.E. Nasab, S.A. Milani, A. Sam, Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J. Radioanal. Nucl. Chem. 288, 677–683 (2011). https://doi.org/10.1007/s10967-011-1008-z

    Article  Google Scholar 

  2. M.O.A. El-Magied, A.A. Tolba, H.S. El-Gendy et al., Studies on the recovery of Th(IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors. Hydrometallurgy 169, 89–98 (2017). https://doi.org/10.1016/j.hydromet.2016.12.011

    Article  Google Scholar 

  3. S.V. Bhat, J.S. Melo, B.B. Chaugule et al., Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J. Hazard. Mater. 158, 628–635 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.042

    Article  Google Scholar 

  4. W. Liu, X. Dai, Z. Bai et al., Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911–3921 (2017). https://doi.org/10.1021/acs.est.6b06305

    Article  Google Scholar 

  5. D. Sheng, L. Zhu, C. Xu et al., Efficient and selective uptake of TcO4 by a cationic metal–organic framework material with open Ag+ sites. Environ. Sci. Technol. 51, 3471–3479 (2017). https://doi.org/10.1021/acs.est.7b00339

    Article  Google Scholar 

  6. T. Zheng, Z. Yang, D. Gui et al., Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun. 8, 15369 (2017). https://doi.org/10.1038/ncomms15369

    Article  Google Scholar 

  7. Y. Wang, Z. Liu, Y. Li et al., Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144–6147 (2015). https://doi.org/10.1021/jacs.5b02480

    Article  Google Scholar 

  8. D. Alipour, A.R. Keshtkar, M.A. Moosavian, Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems. Appl. Surf. Sci. 366, 19–29 (2016). https://doi.org/10.1016/j.apsusc.2016.01.049

    Article  Google Scholar 

  9. L. Weijuan, T. Zuyi, Comparative study on Th(IV) sorption on alumina and silica from aqueous solutions. J. Radioanal. Nucl. Chem. 254(1), 187–192 (2002). https://doi.org/10.1023/A:1020874405480

    Article  Google Scholar 

  10. L. Yan, F. Qiaohui, W. Wangsuo, Sorption of Th(IV) on goethite: effects of pH, ionic strength, FA and phosphate. J. Radioanal. Nucl. Chem. 289, 865–871 (2011). https://doi.org/10.1007/s10967-011-1166-z

    Article  Google Scholar 

  11. G. Zhijun, N. Lijun, T. Zuyi, Sorption of Th(IV) ions onto TiO2: effects of contact time, ionic strength, thorium concentration and phosphate. J. Radioanal. Nucl. Chem. 266(2), 333–338 (2005). https://doi.org/10.1007/s10967-005-0912-5

    Article  Google Scholar 

  12. M. Kruk, M. Jaroniec, A. Sayari, New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous Mesoporous Mater. 35–36, 545–553 (2000). https://doi.org/10.1016/S1387-1811(99)00249-8

    Article  Google Scholar 

  13. H. Yoshitake, Highly-controlled synthesis of organic layers on mesoporous silica: their structure and application to toxic ion adsorptions. New J. Chem. 29, 1107–1117 (2005). https://doi.org/10.1039/b504957a

    Article  Google Scholar 

  14. D. Zhao, J. Feng, Q. Huo et al., Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998). https://doi.org/10.1126/science.279.5350.548

    Article  Google Scholar 

  15. E. Da’na, Adsorption of heavy metals on functionalized-mesoporous silica: a review. Microporous Mesoporous Mater. 247, 145–157 (2017). https://doi.org/10.1016/j.micromeso.2017.03.050

    Article  Google Scholar 

  16. L. Dolatyari, M.R. Yaftian, S. Rostamnia, Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manag. 169, 8–17 (2016). https://doi.org/10.1016/j.jenvman.2015.12.005

    Article  Google Scholar 

  17. S. Wang, K. Wang, C. Dai et al., Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous SBA-15 silica composite. Chem. Eng. J. 262, 897–903 (2015). https://doi.org/10.1016/j.cej.2014.10.035

    Article  Google Scholar 

  18. L. Giraldoa, J.C.M. Piraján, Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15. Mater. Res. 16(4), 745–754 (2013). https://doi.org/10.1590/S1516-14392013005000051

    Article  Google Scholar 

  19. A. Shahbazi, H. Younesi, A. Badiei, Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica. Can. J. Chem. Eng. 91, 739–750 (2013). https://doi.org/10.1002/cjce.21691

    Article  Google Scholar 

  20. G.R. Harvianto, S.H. Kim, C.S. Ju, Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater. Rare Met. 35(12), 948–953 (2016). https://doi.org/10.1007/s12598-015-0453-1

    Article  Google Scholar 

  21. D.R. Raut, P.K. Mohapatra, Extraction of uranyl ion using 2-thenoyltrifluoro acetone (HTTA) in room temperature ionic liquids. Sep. Sci. Technol. 50, 380–386 (2015). https://doi.org/10.1080/01496395.2014.973523

    Article  Google Scholar 

  22. Y. Li, B. Yan, Y. Li, Hybrid materials of SBA-16 functionalized by rare earth (Eu3+, Tb3+) complexes of modified β-diketone (TTA and DBM): covalently bonding assembly and photophysical properties. J. Solid State Chem. 183(4), 871–877 (2010). https://doi.org/10.1016/j.jssc.2010.02.006

    Article  MathSciNet  Google Scholar 

  23. B. Yan, Y. Li, B. Zhou, Covalently bonding assembly and photophysical properties of luminescent hybrids Eu–TTA–Si and Eu–TTA–Si–MCM-41 by modified thenoyltrifluoroacetone. Microporous Mesoporous Mater. 120, 317–324 (2009). https://doi.org/10.1016/j.micromeso.2008.11.021

    Article  Google Scholar 

  24. J. Bassil, A. Al-Barazi, P. Da Costa et al., Catalytic combustion of methane over mesoporous silica supported palladium. Catal. Today 176(1), 36–40 (2011). https://doi.org/10.1016/j.cattod.2011.05.026

    Article  Google Scholar 

  25. J. Du, H. Xu, J. Shen et al., Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M = Al, Zn) catalysts. Appl. Catal. A Gener. 296, 186–193 (2005). https://doi.org/10.1016/j.apcata.2005.08.030

    Article  Google Scholar 

  26. E. Ghedini, F. Menegazzo, M. Signoretto et al., Mesoporous silica as support for Pd-catalyzed H2O2 direct synthesis: effect of textural properties of the support on the activity and selectivity. J. Catal. 273(2), 266–273 (2010). https://doi.org/10.1016/j.jcat.2010.06.003

    Article  Google Scholar 

  27. P. Wang, Z. Wang, J. Li et al., Preparation, characterization and catalytic characteristics of Pd nanoparticles encapsulated in mesoporous silica. Microporous Mesoporous Mater. 116(1), 400–405 (2008). https://doi.org/10.1016/j.micromeso.2008.04.029

    Article  Google Scholar 

  28. A.M. Venezia, G. Di Carlo, L.F. Liotta et al., Effect of Ti(IV) loading CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Appl. Catal. B Environ. 106, 529–539 (2011). https://doi.org/10.1016/j.apcatb.2011.06.013

    Article  Google Scholar 

  29. F. Yin, S. Ji, P. Wu et al., Deactivation behavior of Pd-based SBA-15 mesoporous silica for the catalytic combustion of methane. J. Catal. 257(1), 108–116 (2008). https://doi.org/10.1016/j.jcat.2008.04.010

    Article  Google Scholar 

  30. S.B. Sarrin, Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8, 673–685 (1961). https://doi.org/10.1016/0039-9140(61)80164-1

    Article  Google Scholar 

  31. L. Cromières, V. Moulin, B. Fourest et al., Sorption of thorium onto hematite colloids. Radiochim. Acta 82, 249–256 (1998). https://doi.org/10.1524/ract.1998.82.special-issue.249

    Article  Google Scholar 

  32. P. Sar, S.F. D’Souza, Biosorption of thorium (IV) by a Pseudomonas biomass. Biotechnol. Lett. 24, 239–243 (2002). https://doi.org/10.1023/A:1014153913287

    Article  Google Scholar 

  33. Ş. Sert, C. Kütahyali, S. İnan et al., Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 90, 13–18 (2008). https://doi.org/10.1016/j.hydromet.2007.09.006

    Article  Google Scholar 

  34. S. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. J. Nucl. Mater. 406, 285–292 (2010). https://doi.org/10.1016/j.jnucmat.2010.08.024

    Article  Google Scholar 

  35. S. Yusan, S. Akyil, Sorption of uranium(VI) from aqueous solutions by akaganeite. J. Hazard. Mater. 160, 388–395 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.009

    Article  Google Scholar 

  36. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  Google Scholar 

  37. D.L. Guerraa, R.R. Viana, C. Airoldi, Adsorption of thorium cation on modified clays MTTZ derivative. J. Hazard. Mater. 168, 1504–1511 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.034

    Article  Google Scholar 

  38. S.R. Yousefi, S.J. Ahmadi, F. Shemirania et al., Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80, 212–217 (2009). https://doi.org/10.1016/j.talanta.2009.06.058

    Article  Google Scholar 

  39. L. Dolatyari, M.R. Yaftian, S. Rostamnia, Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 60, 174–184 (2016). https://doi.org/10.1016/j.jtice.2015.11.004

    Article  Google Scholar 

  40. L. Zuo, S. Yu, H. Zhou et al., Th(IV) adsorption on mesoporous molecular sieves: effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. J. Radioanal. Nucl. Chem. 288, 379–387 (2011). https://doi.org/10.1007/s10967-010-0930-9

    Article  Google Scholar 

  41. L.Y. Yuan, Z.Q. Bai, R. Zhao et al., Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium(IV) from aqueous solution. Appl. Mater. Interfaces 6, 4786–4796 (2014). https://doi.org/10.1021/am405584h

    Article  Google Scholar 

  42. S. Yusan, C. Gok, S. Erenturk et al., Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl. Clay Sci. 67–68, 106–116 (2012). https://doi.org/10.1016/j.clay.2012.05.012

    Article  Google Scholar 

  43. C. Kütahyalı, M. Eral, Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J. Nucl. Mater. 396, 251–256 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şenol Sert.

Additional information

This work was supported by the Scientific Technological Research Council of Turkey (No. 113Y557).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gök, M., Sert, Ş., Özevci, G. et al. Efficient adsorption of Th(IV) from aqueous solution by modified SBA-15 mesoporous silica. NUCL SCI TECH 29, 95 (2018). https://doi.org/10.1007/s41365-018-0432-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0432-y

Keywords

Navigation