Skip to main content
Log in

Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Comparing with the traditionally immiscible two-phase extraction, the homogeneous liquid–liquid extraction technique shows potential in industrial separation engineering due to nearly infinite contact interface. In this work the ionic liquid (IL) compounds such as N-(carboxymethyl)-N,N-dimethylethanaminium bis-trifluoromethane-sulfonimide ([DHbet][Tf2N]) and N-(carboxyethyl)-trimethylammonium bistrifluoromethane-sulfonimide ([THbet][Tf2N]) were synthesized. The homogeneous extraction behaviors of europium with two ILs were studied as functions of solution pH, ionic strength, contact time, and initial europium concentration. The results indicated that both homogeneous extractions were dependent on pH and independent on ionic strength. The extraction capacities for [DHbet][Tf2N] and [THbet][Tf2N] were 3.29 mmol/L and 3.16 mmol/L, respectively. ILs could be recovered using 1.0 M hydrochloric acid. The mole-ratio method indicated the formation of a mononuclear complex between the europium ion and IL. Total europium extraction efficiencies of more than 91% for [DHbet][Tf2N] and more than 90% for [THbet][Tf2N] were obtained by quadruple-stage countercurrent extraction. The result proves the feasibility of the homogeneous liquid–liquid extraction technique as an alternative option for europium separation from aquatic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Diwu J, Su J, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137:6144–6147

    Article  CAS  Google Scholar 

  2. Xie J, Wang Y, Liu W, Yin X, Chen L, Zou J, Diwu J, Chai Z, Albrecht-Schmitt TE, Liu G, Wang S (2017) Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew Chem Int Ed 56(26):7500–7504

    Article  CAS  Google Scholar 

  3. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Liu G, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:1–11

    Article  Google Scholar 

  4. Wu Y, Jiang J, Wang M, Jin M (2011) A fusion-driven subcritical system concept based on viable technologies. Nucl Fusion 51:103036–103042

    Article  Google Scholar 

  5. Xian L, Tian G, Beavers CM, Teat SJ, Shuh DK (2016) Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing. Angew Chem Int Ed 55(15):4671–4673

    Article  CAS  Google Scholar 

  6. Rim JH, Armenta CE, Gonzales ER, Ünlü K, Peterson DS (2016) Evaluating bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]) based polymer ligand film (PLF) for plutonium and uranium extraction. J Radioanal Nucl Chem 307(3):2327–2332

    Article  CAS  Google Scholar 

  7. Williams NJ, Dehaudt J, Bryantsev VS, Luo H, Abney CW, Dai S (2017) Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chem Commun 53(18):2744–2747

    Article  CAS  Google Scholar 

  8. Nilsson J, Bauden MP, Nilsson JM, Strand S-E, Elgqvist J (2015) Cancer cell radiobiological studies using in-house-developed α-particle irradiator. Cancer Biother Radiopharm 30(9):386–394

    Article  CAS  Google Scholar 

  9. Shu Q, Khayambashi A, Zou Q, Wang X, Wei Y, He L, Tang F (2017) Studies on adsorption and separation characteristics of americium and lanthanides using a silica-based macroporous bi(2-ethylhexyl) phosphoric acid (HDEHP) adsorbent. J Radioanal Nucl Chem 313(1):29–37

    Article  CAS  Google Scholar 

  10. Muthukumar K, Lakshmi DS, Gujar RB, Boricha AB, Mohapatra PK, Bajaj HC (2016) Synthesis and characterization of magnetic copper-iron-titanate and uptake studies of americium from nuclear waste solutions. RSC Adv 6(113):111822–111830

    Article  CAS  Google Scholar 

  11. Ekberg C, Löfström-Engdahl E, Aneheim E, Foreman MR, Geist A, Lundberg D, Denecked M, Ingmar P (2015) The structures of CyMe4-BTBP complexes of americium(III) and europium(III) in solvents used in solvent extraction, explaining their separation properties. Dalton Trans 42:18395–18402

    Article  Google Scholar 

  12. Chapron S, Marie C, Arrachart G, Miguirditchian M, Pellet-Rostaing S (2015) New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr Ion Exc 33(3):236–248

    Article  CAS  Google Scholar 

  13. Jensen MP, Chiarizia R, Ulicki JS, Spindlerb BD, Murphyb DJ, Mahmun Hossainb M, RocaSabioc A, Andrés B, Rodríguez-Blas T (2015) Solvent extraction separation of trivalent americium from curium and the lanthanides. Solvent Extr Ion Exc 33(4):329–345

    Article  CAS  Google Scholar 

  14. Noronha DM, Pius IC, Chaudhury S (2017) Co-precipitation of plutonium(IV) and americium(III) from nitric acid–oxalic acid solutions with bismuth oxalate. J Radioanal Nucl Chem 313(3):523–529

    Article  CAS  Google Scholar 

  15. Luo L, Qin X, Wu J, Liang G, Li Q, Liu M, Kang F, Chen G, Li B (2018) Interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 6(18):8612–8619

    Article  CAS  Google Scholar 

  16. Liu S, Liu H, Huang Y, Yang W (2015) Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP-kerosene solution. Trans Nonferrous Met Soc China 25(1):329–334

    Article  CAS  Google Scholar 

  17. Silva M, Fernandes L, Olsina R, Stracchiola D (1997) Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol. Anal Chim Acta 342:229–238

    Article  Google Scholar 

  18. Paleologos E, Giokas D, Karayannis M (2005) Micelle-mediated separation and cloud-point extraction. Trends Anal Chem 24(5):426–436

    Article  CAS  Google Scholar 

  19. Karavan M, Smirnov I, Kleshnina S, Solovieva S, Kadirov M, Antipin I, Safiullin R, Gorbacheva S, Novikov A (2017) Micelle mediated extraction of americium and europium by calix [4] arene phosphine oxides from nitric acid media. J Radioanal Nucl Chem 311(1):599–609

    Article  CAS  Google Scholar 

  20. Yuan LY, Liao XH, Liu ZR, Chai ZF, Shi WQ (2017) U(VI) extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane. Radiochim Acta 105(6):441–448

    Article  CAS  Google Scholar 

  21. Yuan LY, Sun M, Mei L, Wang L, Zheng LR, Gao ZQ, Zhang J, Zhao YL, Chai ZF, Shi WQ (2015) New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N′-Diethyl-N,N′-ditolyldipicolinamide as a case study. Inorg Chem 54:1992–1999

    Article  CAS  Google Scholar 

  22. Chemat F, Fabiano-Tixier AS, Vian MA, Allaf T, Vorobiev E (2015) Solvent-free extraction of food and natural products. TrAC-Trends Anal Chem 71:157–168

    Article  CAS  Google Scholar 

  23. Asrami MR, Saien J (2018) Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: experimental investigations and modeling. Sep Purif Technol 204:175–184

    Article  CAS  Google Scholar 

  24. Wilson M, Kore R, Ritchie AW, Fraser RC, Beaumont SK, Srivastava R, Badyal JPS (2018) Palladium–poly(ionic liquid) membranes for permselective sonochemical flow catalysis. Colloid Surf A 545:78–85

    Article  CAS  Google Scholar 

  25. Zhang Y, Liu Y, Ma X, Ma X, Wang B, Li H, Huang Y, Liu C (2018) An environmentally friendly approach to the green synthesis of azo dyes with aryltriazenes via ionic liquid promoted C–N bonds formation. Dyes Pigm 158:438–444

    Article  CAS  Google Scholar 

  26. Li K, Qian L, Song W, Zhu M, Zhao Y, Miao Z (2018) Preparation of an ionic liquid-based hydrogel with hyperbranched topology for efficient removal of Cr(VI). J Mater Sci 53(20):14821–14833

    Article  CAS  Google Scholar 

  27. Han M, Li Y, Gu Z, Shi H, Chen C, Wang Q, Wan H, Guan G (2018) Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S–Cr coordination bond for biodiesel production. Colloid Surf A 553:593–600

    Article  CAS  Google Scholar 

  28. Vaezzadeh M, Shemirani F, Majidi B (2012) Determination of silver in real samples using homogeneous liquid-liquid microextraction based on ionic liquid. J Anal Chem 67(1):28–34

    Article  CAS  Google Scholar 

  29. Onghena B, Binnemans K (2015) Recovery of scandium(III) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl) imide. Ind Eng Chem Res 54(6):1887–1898

    Article  CAS  Google Scholar 

  30. Kelley C, Mielke RE, Dimaquibo D, Curtis AJ, Dewitt JG (1999) Adsorption of Eu(III) onto roots of water hyacinth. Environ Sci Technol 33(9):1439–1443

    Article  CAS  Google Scholar 

  31. Peng J, Song Y, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161(2–3):633–640

    Article  CAS  Google Scholar 

  32. Wang C, Lan J, Feng Y, Wei Y, Zhao Y, Chai Z, Shi W (2014) Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands: a relativistic density functional study. Radiochim Acta 102(1–2):77–86

    CAS  Google Scholar 

  33. Sheng G, Yang S, Zhao D, Sheng J, Wang X (2012) Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem 55(1):182–194

    Article  CAS  Google Scholar 

  34. Tan X, Fang M, Li J, Lu Y, Wang X (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168(1):458–465

    Article  CAS  Google Scholar 

  35. Mori T, Takao K, Sasaki K, Suzuki T, Arai T, Ikeda Y (2014) Homogeneous liquid–liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep Purif Technol 155:133–138

    Article  Google Scholar 

  36. Wang X, Chen C, Du J, Tan X, Xu D, Yu S (2005) Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated γ-Al2O3: a chelating resin exchange study. Environ Sci Technol 39(18):7084–7088

    Article  CAS  Google Scholar 

  37. Yang X, Yang S, Yang S, Hu J, Tan X, Wang X (2011) Effect of pH, ionic strength and temperature on sorption of Pb(II) on NKF-6 zeolite studied by batch technique. Chem Eng J 168(1):86–93

    Article  CAS  Google Scholar 

  38. Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na-attapulgite. Chem Eng J 150(1):188–195

    Article  CAS  Google Scholar 

  39. Tan C, Zhang X, Cao S, Li S, Guo H, Yuan Tian, Chen D, Tian W, Wang L, Zhi Q (2018) Solvent extraction of americium(III) and europium(III) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine in ionic liquids: experimental study and molecular dynamics simulation. Sep Purif Technol 192:302–308

    Article  CAS  Google Scholar 

  40. Racheva R, Rahlf AF, Wenzel D, Müllera C, Kernerc M, Luinstrab GA, Smirnovaa I (2018) Aqueous food-grade and cosmetic-grade surfactant systems for the continuous countercurrent cloud point extraction. Sep Purif Technol 202:76–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11605027, 21866003, 41461070, 11475044, 21561002, 21501025, 21761002), the China Postdoctoral Science Foundation (2016M600981) and Natural Science Foundation of Jiangxi Province (No. 20171BAB213020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Cao, B., Zhong, S. et al. Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids. J Radioanal Nucl Chem 319, 1219–1225 (2019). https://doi.org/10.1007/s10967-019-06419-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06419-7

Keywords

Navigation