Skip to main content
Log in

Effects of uranium stress on physiological and biochemical characteristics in seedlings of six common edible vegetables

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The large-scale exploitation of uranium (U) not only causes radioactive pollution to the soil, but also has a great adverse effect on human health. However, the current understanding of the effects of U stress on organisms is not deep enough. As food sources of human beings, vegetables can enrich U into the human body along the food chain. Therefore, the effects of soil U on seed germination, seedling growth and physiological and biochemical characteristics of six common edible vegetables (tomato, cucumber, kohlrabi, radish, cabbage, and spinach) were investigated. The results show that the toxicity of U to the six vegetables in sandy loam is cucumber > radish > spinach > cabbage > tomato > kohlrabi. The lower U concentration in sandy loam has certain promoting effect on seed germination and root growth. The accumulation and tolerance capacity of cucumber and radish to U in sandy loam is stronger than that of other four vegetables, which may be used as candidate species for biological treatment of U pollution. These results provide theoretical basis for clarifying the biological effects and toxicological mechanism of U pollution, and also provide theoretical basis for scientific prevention and control of soil U pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD (2013) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. J Radioanal Nucl Chem 295:1195–1200

    Article  CAS  Google Scholar 

  2. Wang J (2014) On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Geotech Eng 6:99–104

    Article  CAS  Google Scholar 

  3. Waseem A, Ullah H, Rauf MK, Ahmad I (2015) Distribution of natural uranium in surface and groundwater resources: a review. Crit Rev Environ Sci Technol 45:2391–2423

    Article  CAS  Google Scholar 

  4. Kim G, Kim I, Kim S, Choi J (2016) Removal of uranium from contaminated soil using indoor electrokinetic decontamination. J Radioanal Nucl Chem 309:1175–1181

    Article  CAS  Google Scholar 

  5. Tarafder PK, Ghosh PK, Chakrapani G (2015) Field method for the rapid determination of traces of uranium in rocks, soil and stream sediments by fluorescence measurement. J Radioanal Nucl Chem 306:357–363

    Article  CAS  Google Scholar 

  6. Kim G, Kim S, Park H, Kim W, Park U, Moon J (2013) Remediation of soil/concrete contaminated with uranium and radium by biological method. J Radioanal Nucl Chem 297:71–78

    Article  CAS  Google Scholar 

  7. Buema G, Noli F, Misaelides P, Sutiman DM, Cretescu I, Harja M (2014) Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299:381–386

    Article  CAS  Google Scholar 

  8. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  9. Stojanović MD, Stevanović DR, Milojković JV, Grubišić MS, Ileš DA (2010) Phytotoxic effect of the uranium on the growing up and development the plant of corn. Water Air Soil Pollut 209:401–410

    Article  CAS  Google Scholar 

  10. Chen F, Wang S, Mou S, Azimuddin I, Zhang D, Pan X, Al-Misned FA, Mortuza MG (2015) Physiological responses and accumulation of heavy metals and arsenic of Medicago sativa L. growing on acidic copper mine tailings in arid lands. J Geochem Explor 157:27–35

    Article  CAS  Google Scholar 

  11. Ünak T, Yildirim Y, Tokucu G, Ünak G, Öcal J, Konyali D, Kiliç S (2007) Study of the effect of uranium and thorium on the growing of pepper (Capsicum annuum var. longum) and cucumber (Cucumis sativus) plants. J Radioanal Nucl Chem 273:763–766

    Article  CAS  Google Scholar 

  12. Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505

    Article  CAS  PubMed  Google Scholar 

  13. Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694

    Article  CAS  Google Scholar 

  14. Hendershot WH, Lalande H, Duquette M (2007) Ion exchange and exchangeable cations. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Shaw K (1959) Determination of organic carbon in soil and plant material. J Soil Sci 10:316–326

    Article  CAS  Google Scholar 

  16. Sheppard SC, Stephenson GL (2012) Ecotoxicity of aged uranium in soil using plant, earthworm and microarthropod toxicity tests. Bull Environ Contam Tocicol 88:43–47

    Article  CAS  Google Scholar 

  17. Favas PJC, Pratas J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci Total Environ 568:350–368

    Article  CAS  PubMed  Google Scholar 

  18. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:12

    Article  CAS  Google Scholar 

  19. Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut R 10:335–340

    Article  CAS  Google Scholar 

  20. Pereira R, Marques CR, Ferreira MJS, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220

    Article  Google Scholar 

  21. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:18

    Article  CAS  Google Scholar 

  22. Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:3

    Article  CAS  Google Scholar 

  23. Jagetiya BL, Purohit P (2006) Effects of various concentrations of uranium tailings on certain growth and biochemical parameters in sunflower. Biologia 61:103–107

    Article  CAS  Google Scholar 

  24. Gorman-Lewis D, Shvareva T, Kubatko KA, Burns PC, Wellman DM, Mcnamara B, Szymanowski JES, Navrotsky A, Fein JB (2009) Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements. Environ Sci Technol 43:7416–7422

    Article  CAS  PubMed  Google Scholar 

  25. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  27. Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  28. Bhaduri AM, Fulekar MH (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11:55–69

    Article  CAS  Google Scholar 

  29. Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248

    Article  CAS  Google Scholar 

  30. Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from NSFC (21607043; 21577032), the Fundamental Research Funds for the Central Universities (2016ZZD06, JB2015001), the Open Project of Key Laboratory of Environmental Biotechnology, CAS (Grant No kf2016009) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiguo Li or Xiangke Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wang, C., Zhou, Y. et al. Effects of uranium stress on physiological and biochemical characteristics in seedlings of six common edible vegetables. J Radioanal Nucl Chem 316, 1001–1010 (2018). https://doi.org/10.1007/s10967-018-5792-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5792-6

Keywords

Navigation