Skip to main content
Log in

Uranium removal from aqueous solutions by raw and modified thermal power plant ash

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The U(VI) removal from aqueous solutions (concentration range 125–2,000 mg/L, pH 3) by raw and NaOH-modified power plant ash was investigated by means of a batch method under the following experimental conditions: NaOH concentration 5 M, contact time 1 h, respectively 4 h, temperature 70, 90 °C. The amount of sorbed uranium was determined spectrophotometricaly using the Arsenazo III method. The sorbents were examined prior and after the sorption experiments by scanning electron microscopy/energy dispersive spectroscopy. Typical sorption isotherms were calculated and modeled by the Langmuir and Freundlich equations. The experimental data showed that all materials can remove considerable amounts of uranium from acidic aqueous solutions. The maximum removal efficiency (q max) values obtained, are 126 mg U/g for raw ash and 206 mg U/g for NaOH-modified. Sorption kinetics measurements were performed at 298, 308 and 323 K and thermodynamic parameters were calculated. The kinetic data obey a pseudo-second order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eisenbud E, Gesell TF (1997) Environmental radioactivity from natural, industrial and military sources, 4th edn. Academic Press, San Diego

    Google Scholar 

  2. Gavrilescu M, Pavel LV, Cretescu I (2009) J Hazard Mater 163:475–510

    Article  CAS  Google Scholar 

  3. Yamaguchi N, Kawasaki A, Iiyama T (2009) Sci Tot Environ 407:1383–1390

    Article  CAS  Google Scholar 

  4. Radioactive elements in coal and fly ash (1997) Abundance, forms, and environmental significance, U.S. Geological Survey Fact Sheet FS-163-97 http://pubs.usgs.gov/fs/1997/fs163-97/FS-163-97.pdf. Accessed 28 Apr 2013

  5. Todorovsky D, Kulev I (1993) J Radioanal Nucl Chem Lett 176(5):405–413

    Article  CAS  Google Scholar 

  6. Toxicological Profile for Uranium, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2011) http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=440&tid=77. Accessed 28 Apr 2013

  7. Lawrence DG (2004) Uranium Toxicity Literature with Commentaries http://myweb.brooklyn.liu.edu/lawrence/duproject/litsum3.pdf. Accessed 28 Apr 2013

  8. Craig DK (2001) Chemical and radiological toxicity of uranium and its compounds, WSRC-TR-2001-00331, Westinghouse Savannah River Company, Aiken, SC. http://www.osti.gov/bridge. Accessed 28 Apr 2013

  9. U.S. E.P.A., National Primary Drinking Water Regulations (2000) Radon-222, Federal Register/vol. 65, No. 236 rules and regulations. http://rais.ornl.gov/epa/fr07de00R.pdf

  10. WHO Uranium in drinking water (2012) http://www.who.int/waterhealth/index.html. Accessed 10 Jun 2013

  11. Misaelides P (2008) In: Vaclavikova M, Vitale K, Gallios G, Ivanicova L (eds) Water treatment technologies for the removal of high-toxicity pollutants. Springer, Dordrecht

    Google Scholar 

  12. Ahmaruzzaman M (2010) Progr Energy Comb Sci 36(3):327–363

    Article  CAS  Google Scholar 

  13. Derkowski A, Franus W, Beran E, Czímerová A (2006) Powder Technol 166:47–54

    Article  CAS  Google Scholar 

  14. Gupta VK, Suhas (2009) J Environ Manage 90(8):2313–2342

    Article  CAS  Google Scholar 

  15. Wang S, Wu H (2006) J Hazard Mater B136:482–501

    Article  Google Scholar 

  16. Hollman GG, Steenbruggen G, Jannsen-Jurkovičovà M (1999) Fuel 78:1225–1230

    Article  CAS  Google Scholar 

  17. Juan R, Hernandez S, Andres JM, Ruiz C (2007) Fuel 86:1811–1821

    Article  CAS  Google Scholar 

  18. Seeley FG, Kelmers AD (1985) Geochemical information for sites contaminated with low-level radioactive wastes: II—St. Louis airport storage site, ORNL—6097

  19. Li Shiyou, Xie Shuibo, Zhao Cong, Zhang Yaping, Liu Jinxiang, Cai Ting (2013) Adv Mat Res 639–640:1295–1299

    Article  Google Scholar 

  20. Harja M, Buema G, Sutiman DM, Cretescu I (2013) Chem Pap 67:497–508

    Article  CAS  Google Scholar 

  21. Harja M, Barbuta M, Rusu L, Munteanu C, Buema G, Doniga E (2011) Environ Eng Man J 10(3):341–347

    CAS  Google Scholar 

  22. Harja M, Buema G, Sutiman DM, Munteanu C, Bucur D (2012) Korean J Chem Eng 29:1735–1744

    Article  CAS  Google Scholar 

  23. Savvin SB (1964) Talanta 11:1–6

    Article  CAS  Google Scholar 

  24. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  25. Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Environ Sci Technol 37:41–127

    CAS  Google Scholar 

  26. Warchoł J, Matłok M, Misaelides P, Noli F, Zamboulis D, Godelitsas A (2012) Microporous Mesoporous Mater 153:63–69

    Article  Google Scholar 

  27. Han R, Zou W, Wang Y, Zhu L (2007) J Environ Radioact 93:127–143

    Article  CAS  Google Scholar 

  28. Shuibo X, Chun Z (2009) J Environ Radioact 100:162–166

    Article  Google Scholar 

  29. Sylwester ER, Hudson EA, Allen PG (2000) Geochim Cosmochim Acta 14:2431–2438

    Article  Google Scholar 

  30. Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  31. Fan QH, Li P, Chen YF et al (2011) J Hazard Mater 192(3):1851–1859

  32. Sprynskyy M, Kovalchuk I, Buszewski B (2010) J Hazard Mater 181(1–3):700–707

    Article  CAS  Google Scholar 

  33. Donat R (2009) J Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

  34. Tseng Ru-Ling, Wub Feng-Chin, Juang Ruey-Shin (2010) J Taiwan Instit Chem Eng 41:661–669

    Article  CAS  Google Scholar 

  35. Ho YS, McKay G (1999) Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  36. Ho YS, Ng JCY, McKay G (2001) Sep Sci Technol 36(2):241–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with the support of Posdru Cuantumdoc “Doctoral Studies for European Performances in Research and Innovation” ID79407 project funded by the European Social Fund and the Romanian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Noli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buema, G., Noli, F., Misaelides, P. et al. Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299, 381–386 (2014). https://doi.org/10.1007/s10967-013-2801-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2801-7

Keywords

Navigation