Skip to main content
Log in

Preparation of high-performance PLA / PBAT blends with hierarchical structure by controlling distribution of oriented region

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

PLA is a potential fully biodegradable material, but its poor toughness and heat resistance seriously limit its wide application. In this work, a strong and tough balanced PLA based PLA/PBAT material with good heat resistance was successfully prepared using a self-designed vibration injection molding (VIM) device. From the results of SEM, SAXS, and WAXD, the internal structure of samples changed apparently compared with conventional injection molded ones. The distribution of the orientated region was controlled by changing the vibration parameters. The combination of hierarchical structure and the introduction of elastomer provide the sample with improved toughness without the sacrifice of strength. The maximum impact strength of samples can reach 20.24 kJ/m2. Besides, the thermal resistance also improves. The Vicat softening temperature can reach 71.1 ℃. This work proves the superiority of hierarchical structure for PLA/PBAT samples and provides a new method to broaden the application range of PLA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Garlotta D (2001) A Literature Review of Poly(Lactic Acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: An overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  3. Saini P, Arora M, Kumar M (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59

    Article  CAS  PubMed  Google Scholar 

  4. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  5. Sdergrd A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  6. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 89:161–174

    Article  CAS  PubMed  Google Scholar 

  7. Chen G, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  8. Gupta A, Kumar M, Thakur IS (2017) Analysis and optimization of process parameters for production of polyhydroxyalkanoates along with wastewater treatment by Serratia sp. ISTVKR1. Bioresour Technol 242:55–59

    Article  CAS  PubMed  Google Scholar 

  9. Numata K, Abe H, Iwata T (2009) Biodegradability of poly(hydroxyalkanoate) materials. Materials 2:1104–1126

    Article  CAS  PubMed Central  Google Scholar 

  10. Chen Z, Hu J, Ju J, Kuang T (2019) Fabrication of poly(butylene succinate)/carbon black nanocomposite foams with good electrical conductivity and high strength by a supercritical CO2 foaming process. Polymers 11:1852-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mizuno S, Maeda T, Kanemura C, Hotta A (2015) Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes. Polym Degrad Stab 117:58–65

    Article  CAS  Google Scholar 

  12. Zhang Y, Wang X, Wang Y, Yang K, Li J (2005) A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym Degrad Stab 88:294–299

    Article  CAS  Google Scholar 

  13. Sangroniz A, Gonzalez A, Martin L, Irusta L, Iriarte M, Etxeberria A (2018) Miscibility and degradation of polymer blends based on biodegradable poly(butylene adipate- co -terephthalate). Polym Degrad Stab 151:25–35

    Article  CAS  Google Scholar 

  14. Sangroniz A, Sangroniz L, Aranburu N, Fernández M, Santamaria A, Iriarte M, Etxeberria A (2018) Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether) for packaging applications: Miscibility, rheology and transport properties. Eur Polym J 105:348–358

    Article  CAS  Google Scholar 

  15. Sangroniz A, Sangroniz L, Gonzalez A, Santamaria A, Rio JD, Iriarte M, Etxeberria A (2019) Improving the barrier properties of a biodegradable polyester for packaging applications. Eur Polym J 115:76–85

    Article  CAS  Google Scholar 

  16. Rg S (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A 33:585–597

    Article  Google Scholar 

  17. Ojijo V, Ray S, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395–2405

    Article  CAS  PubMed  Google Scholar 

  18. Spinella S, Cai J, Samuel C, Zhu J, Mccallum S, Habibi Y, Raquez J-M, Dubois P, Gross RA (2015) Polylactide/poly(ω-hydroxytetradecanoic acid) reactive blending: A green renewable approach to improving polylactide properties. Biomacromol 16:1818–1826

    Article  CAS  Google Scholar 

  19. Vidhya N, Amark M, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916

    Article  Google Scholar 

  20. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914

    Article  CAS  Google Scholar 

  21. Liu T, Lian X, Li L, Peng X, Kuang T (2020) Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene adipate-co-terephthalate) in-situ nanofibrillar composites with high strength, good toughness and excellent heat resistance - ScienceDirect. Polym Degrad Stab 171:109044

    Article  CAS  Google Scholar 

  22. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  23. Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289

    Article  CAS  Google Scholar 

  24. Shahnooshi M, Javadi A, Nazockdast H, Altstädt V (2020) Development of in situ nanofibrillar poly (lactic acid)/poly (butylene terephthalate) composites: Non-isothermal crystallization and crystal morphology. Eur Polym J 125

  25. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207

    Article  Google Scholar 

  26. Lertwongpipat N, Petchwatana N, Covavisaruch S (2014) Enhancing the flexural and impact properties of bioplastic poly(lactic acid) by melt blending with poly(butylene succinate). Adv Mat Res 931–932:106–110

    Google Scholar 

  27. Budtri N, Aekrum S, Lertsiriyothin W (2019) The compatibility of polylactides and polybutylene succinate in PLA blends based on thermal, mechanical, and rheological properties. Orient J Chem 33:2766–2775

    Article  Google Scholar 

  28. Li C, Jiang T, Wang J, Wu H, Guo S, Zhang X, Li J, Shen J, Chen R, Xiong Y (2017) In situ formation of microfibrillar crystalline superstructure: Achieving high-performance polylactide. ACS Appl Mater Interfaces 9:25818–25829

    Article  CAS  PubMed  Google Scholar 

  29. Zheng H, Quan Y, Zheng G, Dai K, Liu C, Shen C (2015) Fabrication of polymer/aligned shish-kebab composite: microstructure and mechanical properties. RSC Adv 5:60392–60400

    Article  CAS  Google Scholar 

  30. Mi D, La R, Wang T, Zhang X, Zhang J (2017) Hierarchic structure and mechanical property of glass fiber reinforced isotactic polypropylene composites molded by multiflow vibration injection molding. Polym Compos 38:2707–2717

    Article  CAS  Google Scholar 

  31. Mi D, Hou F, Zhou M, Zhang J (2018) Improving the mechanical and thermal properties of shish-kebab via partial melting and re-crystallization. Eur Polym J 101

  32. Gu X, Zhou M, Wang Y, Zhang J (2019) Influence of annealing on the morphology and mechanical properties of iPP/HDPE blend with tailored oriented crystalline structures. J Polym Res 26

  33. Huang Y, Xu J, Xu J, Zhang Z, Hsiao BS, Xu L, Li Z (2014) Self-reinforced polyethylene blend for artificial joint application. J Mater Chem B 2:971–980

    Article  CAS  PubMed  Google Scholar 

  34. Zheng G, Jia Z, Liu X, Liu B, Zhang X, Dai K, Shao C, Zheng X, Liu C, Cao W, Chen J, Peng X, Li Q, Shen C (2012) Enhanced orientation of the water-assisted injection-molded ipp in the presence of nucleating agent. Polym Eng Sci 52:725–732

    Article  CAS  Google Scholar 

  35. Zhou M, Mi D, Hou F, Zhang J (2017) Tailored crystalline structure and mechanical properties of isotactic polypropylene/high molecular weight polyethylene blend. Ind Eng Chem Res 56:8385–8392

    Article  CAS  Google Scholar 

  36. Xu H, Xie L, Chen Y, Huang H, Xu J, Zhong G, Hsiao BS, Li Z (2013) Strong shear flow-driven simultaneous formation of classic shish-kebab, hybrid shish-kebab, and transcrystallinity in poly(lactic acid)/natural fiber biocomposites. ACS Sustain Chem Eng 1:1619–1629

    Article  CAS  Google Scholar 

  37. Mi D, Xia C, Jin M, Wang F, Shen K, Zhang J (2016) Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 49:4571–4578

    Article  CAS  Google Scholar 

  38. Hu M, Deng C, Gu X, Fu Q, Zhang J (2019) Manipulating strength-toughness balance of poly(L-lactide) (PLLA) via introducing ductile poly(ε-caprolactone) (PCL) and strong shear flow. Ind Eng Chem Res 59:1000–1009

    Article  Google Scholar 

  39. Hong R, Jiang Y, Leng J, Liu M, Shen K, Fu Q, Zhang J (2021) Synergic enhancement of high-density polyethylene through ultrahigh molecular weight polyethylene and multi-flow vibration injection molding: A facile fabrication with potential industrial prospects. Chinese J Polym Sci 39:756–769

    Article  CAS  Google Scholar 

  40. Hou F, Mi D, Zhou M, Zhang J (2017) The influences of a novel shear layer-spherulites layer alternated structure on the mechanical properties of injection-molded isotactic polypropylene. Polymer 122:12–21

    Article  CAS  Google Scholar 

  41. Yang Y, Zhang L, Xiong Z, Tang Z, Zhang R, Zhu J (2016) Research progress in the heat resistance, toughening and filling modification of PLA. Sci China Chem 59:1355–1368

    Article  CAS  Google Scholar 

  42. Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez J-M, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17

    Article  CAS  Google Scholar 

  43. Park SH, Lee SG, Hun S (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos Part A Appl Sci Manuf 46:11–18

    Article  CAS  Google Scholar 

  44. Xie X, Sang Z, Xu J, Zhong G, Li Z, Ji X, Wang R, Xu L (2017) Layer structure by shear-induced crystallization and thermal mechanical properties of injection-molded poly(L-lactide) with nucleating agents. Polymer 10:196–210

    Article  Google Scholar 

  45. Shakoor A, Thomas NL (2014) Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Polym Eng Sci 54:64–70

    Article  CAS  Google Scholar 

  46. Chen J, Deng C, Hong R, Fu Q, Zhang J (2020) Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. J Polym Res 27:221

    Article  CAS  Google Scholar 

  47. Dudley M (1993) X-ray topography. MRS Online Proceeding Library Archive 307:213–224

    Article  CAS  Google Scholar 

  48. Zhou S, Niu B, Xie X, Ji X, Zhong G, Hsiao BS, Li Z (2017) Interfacial shish-kebabs lengthened by coupling effect of in situ flexible nanofibrils and intense shear flow: Achieving hierarchy to conquer the conflicts between strength and toughness of polylactide. ACS Appl Mater Interfaces 9:10148–10159

    Article  CAS  PubMed  Google Scholar 

  49. Jiang Y, Mi D, Wang Y, Wang T, Shen K, Zhang J (2018) Insight into understanding the influence of blending ratio on the structure and properties of high-density polyethylene/polystyrene microfibril composites prepared by vibration injection molding. Ind Eng Chem Process Des Dev 58:1190–1199

    Google Scholar 

  50. Jiang Y, Wu J, Leng J, Cardon L, Zhang J (2020) Reinforced and toughened PP/PS composites prepared by Fused Filament Fabrication (FFF) with in-situ microfibril and shish-kebab structure. Polymer 186:121971

    Article  CAS  Google Scholar 

  51. Zhao LL, Su JJ, Han J, Zhang B, Ou L (2017) Optimizing the balance between stiffness and flexibility by tuning the compatibility of a poly(lactic acid)/ethylene copolymer. Rsc Adv 7:23065–23072

    Article  CAS  Google Scholar 

  52. Liu M, Hong R, Gu X, Fu Q, Zhang J (2019) Remarkably improved impact fracture toughness of isotactic polypropylene via combining the effects of shear layer-spherulites layer alternated structure and thermal annealing. Ind Eng Chem Res 58:15069–15078

    Article  CAS  Google Scholar 

  53. Xu H, Xie L, Hakkarainen M (2015) Beyond a model of polymer processing-triggered shear: Reconciling shish-kebab formation and control of chain degradation in sheared poly(l-lactic acid). ACS Sustain Chem Eng 3:1443–1452

    Article  CAS  Google Scholar 

  54. Li J, Ma P, Favis BD (2002) The role of the blend interface type on morphology in cocontinuous polymer blends. Macromolecules 35:2005–2016

    Article  CAS  Google Scholar 

  55. Garlotta D (2001) A literature review of poly(lactic acid). J Environ Polym Degrad 9:63–84

    Article  CAS  Google Scholar 

  56. Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  CAS  Google Scholar 

  57. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors genuinely appreciate the financial supports of the National Natural Science Foundation of China (No. 21627804) and the technical support from the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China) for help with X-ray measurements.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Peng Li and Jie Zhang; methodology, Peng Li; validation, Yixin Jiang, Jin Chen, Jie Min; formal analysis, Peng Li; investigation, Peng Li; writing—original draft preparation, Peng Li; writing—review and editing, Qiang Fu and Jie Zhang; supervision, Qiang Fu and Jie Zhang; project administration, Qiang Fu and Jie Zhang; All authors have read and agreed to the published version of the manuscript.”

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Jiang, Y., Chen, J. et al. Preparation of high-performance PLA / PBAT blends with hierarchical structure by controlling distribution of oriented region. J Polym Res 30, 128 (2023). https://doi.org/10.1007/s10965-023-03512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03512-0

Keywords

Navigation