Skip to main content
Log in

Synergic Enhancement of High-density Polyethylene through Ultrahigh Molecular Weight Polyethylene and Multi-flow Vibration Injection Molding: A Facile Fabrication with Potential Industrial Prospects

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

General-purpose plastics with high strength and toughness have been in great demand for structural engineering applications. To achieve the reinforcement and broaden the application scope of high-density polyethylene (HDPE), multi-flow vibration injection molding (MFVIM) and ultrahigh molecular weight polyethylene (UHMWPE) are synergistically employed in this work. Herein, the MFVIM has better shear layer control ability and higher fabrication advantage for complex parts than other analogous novel injection molding technologies reported. The reinforcing effect of various filling times and UHMWPE contents as well as the corresponding microstructure evolution are investigated. When 5 wt% UHMWPE is added, MFVIM process with six flow times thickens the shear layer to the whole thickness. The tensile strength and modulus increase to 2.14 and 1.39 times, respectively, compared to neat HDPE on the premise of remaining 70% impact strength. Structural characterizations indicate that the enhancement is attributed to the improvement of shish-kebab content and lamellae compactness, as well as related to the corresponding size distributions of undissolved UHMWPE particles. This novel injection molding technology with great industrial prospects provides a facile and effective strategy to broaden the engineering applications of HDPE materials. Besides, excessive UHMWPE may impair the synergistic enhancement effect, which is also reasonably explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khanal, S.; Zhang, W.; Ahmed, S.; Ali, M.; Xu, S. Effects of intumescent flame retardant system consisting of tris(2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 444–451.

    Article  CAS  Google Scholar 

  2. Seretis, G. V.; Manolakos, D. E.; Provatidis, C. G. On the graphene nanoplatelets reinforcement of extruded high density polyethylene. Compos. Part B: Eng. 2018, 145, 81–89.

    Article  CAS  Google Scholar 

  3. Liu, Y.; Gao, S.; Hsiao, B. S.; Norman, A.; Tsou, A. H.; Throckmorton, J.; Doufas, A.; Zhang, Y. Shear induced crystallization of bimodal and unimodal high density polyethylene. Polymer 2018, 153, 223–231.

    Article  CAS  Google Scholar 

  4. Lin, Y.; Patel, R.; Cao, J.; Tu, W.; Zhang, H.; Bilotti, E.; Bastiaansen, C. W. M.; Peijs, T. Glass-like transparent high strength polyethylene films by tuning drawing temperature. Polymer 2019, 171, 180–191.

    Article  Google Scholar 

  5. Savas, L. A.; Tayfun, U.; Dogan, M. The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Compos. Part B: Eng. 2016, 99, 188–195.

    Article  CAS  Google Scholar 

  6. Kong, C.; Wang, Y.; Ye, L.; Zhao, X. Structure and self-reinforcing mechanism of biaxially oriented polyethylene pipes produced by solid phase die drawing. Polymer 2019, 178, 121556.

    Article  CAS  Google Scholar 

  7. Ormsby, R. T.; Solomon, L. B.; Yang, D.; Crotti, T. N.; Haynes, D. R.; Findlay, D. M.; Atkins, G. J. Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater. 2019, 87, 296–306.

    Article  PubMed  CAS  Google Scholar 

  8. Pi, L.; Guo, D.; Nie, M.; Wang, Q. Highly endurable hydrostatic pressure polyethylene pipe prepared by the combination of rotation extrusion and lightly cross-linked polyethylene. J. Polym. Res. 2018, 25, 177.

    Article  Google Scholar 

  9. Zhang, L.; Lu, C.; Dong, P.; Wang, K.; Zhang, Q. Reaalizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer 2019, 180, 121711.

    Article  CAS  Google Scholar 

  10. Yang, H.; Hui, L.; Zhang, J.; Chen, P.; Li, W. Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends. J. Appl. Polym. Sci. 2017, 134.

  11. Song, S.; Wu, P.; Ye, M.; Feng, J.; Yang, Y. Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer 2008, 49, 2964–2973.

    Article  CAS  Google Scholar 

  12. Chen, J.; Yang, W.; Yu, G. P.; Wang, M.; Ni, H. Y.; Shen, K. Z. Continuous extrusion and tensile strength of self-reinforced HDPE/UHMWPE sheet. J. Mater. Proc. Technol. 2008, 202, 165–169.

    Article  CAS  Google Scholar 

  13. Pan, Y.; Guo, X.; Zheng, G.; Liu, C.; Chen, Q.; Shen, C.; Liu, X. Shear-induced skin-core structure of molten isotactic polypropylene and the formation of β-crystal. Macromol. Mater. Eng. 2018, 303, 1800083.

    Article  Google Scholar 

  14. Shen, B.; Liang, Y.; Kornfield, J. A.; Han, C. C. Mechanism for shish formation under shear flow: an interpretation from an in situ morphological study. Macromolecules 2013, 46, 1528–1542.

    Article  CAS  Google Scholar 

  15. Jiang, Y.; Mi, D.; Wang, Y.; Wang, T.; Shen, K.; Zhang, J. Insight into understanding the influence of blending ratio on the structure and properties of high-density polyethylene/polystyrene microfibril composites prepared by vibration injection molding. Indust. Eng. Chem. Res. 2018, 58, 1190–1199.

    Article  Google Scholar 

  16. Chen, Y.; Fang, D.; Hsiao, B. S.; Li, Z. Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer 2015, 60, 274–283.

    Article  CAS  Google Scholar 

  17. Jiang, Y.; Mi, D.; Wang, Y.; Wang, T.; Shen, K.; Zhang, J. Composite contains large content of in situ microfibril, prepared directly by injection molding: morphology and property. Macromol. Mater. Eng. 2018, 303, 1800270.

    Article  Google Scholar 

  18. Liu, X.; Lian, M.; Pan, Y.; Wang, X.; Zheng, G.; Liu, C.; Schubert, D. W.; Shen, C. An alternating skin-core structure in melt multi-injection-molded polyethylene. Macromol. Mater. Eng. 2018, 303, 1700465.

    Article  Google Scholar 

  19. Liu, T.; Huang, A.; Geng, L. H.; Lian, X. H.; Chen, B. Y.; Hsiao, B. S.; Kuang, T. R.; Peng, X. F. Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: a facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Compos. Sci. Technol. 2018, 167, 301–312.

    Article  CAS  Google Scholar 

  20. Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687–6697.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, Y. F.; Xu, J. Z.; Zhang, Z. C.; Xu, L.; Li, L. B.; Li, J. F.; Li, Z. M. Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene. Chem. Eng. J. 2017, 315, 132–141.

    Article  CAS  Google Scholar 

  22. Xu, L.; Huang, Y. F.; Xu, J. Z.; Ji, X.; Li, Z. M. Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene. RSC Adv. 2014, 4, 1512–1520.

    Article  CAS  Google Scholar 

  23. Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571–4578.

    Article  CAS  Google Scholar 

  24. Hou, F.; Mi, D.; Zhou, M.; Zhang, J. The influences of a novel shear layer-spherulites layer alternated structure on the mechanical properties of injection-molded isotactic polypropylene. Polymer 2017, 122, 12–21.

    Article  CAS  Google Scholar 

  25. Liu, M.; Hong, R.; Gu, X.; Fu, Q.; Zhang, J. Remarkably improved impact fracture toughness of isotactic polypropylene via combining the effects of shear layer-spherulites layer alternated structure and thermal annealing. Ind. Eng. Chem. Res. 2019, 58, 15069–15078.

    Article  CAS  Google Scholar 

  26. Gu, X.; Wang, Y.; Jiang, Y.; Liu, M.; Fu, Q.; Zhang, J. High impact performance induced by a synergistic effect of heteroepitaxy and oriented layer-unoriented layer alternated structure in iPP/HDPE injection molded part. Polymer 2019, 175, 206–214.

    Article  CAS  Google Scholar 

  27. Gu, X.; Hong, R.; Leng, J.; Hu, M.; Fu, Q.; Zhang, J. Evolution of iPP/HDPE morphology under different mold temperatures via multiflow vibration injection molding: thermal field simulation and oriented structures. Indust. Eng. Chem. Res. 2020, 59, 6741–6750.

    Article  CAS  Google Scholar 

  28. Wang, Y.; Hou, F.; Mi, D.; Zhou, M.; Jiang, Y.; Zhang, J. Sel-reinforcement of polypropylene lid-shaped samples induced by increasing shish-kebab content: practical application of vibration injection technology. Ind. Eng. Chem. Res. 2018, 57, 8620–8629.

    Article  CAS  Google Scholar 

  29. Salleh, F. M.; Hassan, A.; Yahya, R.; Azzahari, A. D. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos. Part B: Eng. 2014, 58, 259–266.

    Article  CAS  Google Scholar 

  30. Jaggi, H. S.; Satapathy, B. K.; Ray, A. R. Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J. Polym. Res. 2014, 21, 482.

    Article  Google Scholar 

  31. Diop, M. F.; Burghardt, W. R.; Torkelson, J. M. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 2014, 55, 4948–4958.

    Article  CAS  Google Scholar 

  32. Lim, K. L. K.; Ishak, Z. A. M.; Ishiaku, U. S.; Fuad, A. M. Y.; Yusof, A. H.; Czigany, T.; Pukanszky, B.; Ogunniyi, D. S. High-dnnsity polyethylene/ultrahigh-molecular-weight polyethylene blend I. The processing, thermal, and mechanical properties. J. Appl. Polym. Sci. 2005, 97, 413–425.

    Article  CAS  Google Scholar 

  33. Boscoletto, A. B.; Franco, R.; Scapin, M.; Tavan, M. An investigation on rheological and impact behaviour of high density and ultra high molecular weight polyethylene mixtures. Eur. Polym. J. 1997, 33, 97–105.

    Article  CAS  Google Scholar 

  34. Sun, H.; Liu, G.; Ntetsikas, K.; Avgeropoulos, A.; Wang, S. Q. Rheology of entangled polymers not far above glass transition temperature: transient elasticity and intersegmental viscous stress. Macromolecules 2014, 47, 5839–5850.

    Article  CAS  Google Scholar 

  35. Wang, S. Q.; Liu, G.; Cheng, S.; Boukany, P. E.; Wang, Y.; Li, X. Letter to the Editor: sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. J. Rheol. 2014, 58, 1059–1069.

    Article  CAS  Google Scholar 

  36. Bair, S.; Yamaguchi, T.; Brouwer, L.; Schwarze, H.; Vergne, P.; Poll, G. Oscillatory and steady shear viscosity: the Cox-Merz rule, superposition, and application to EHL friction. Tribol. Int. 2014, 79, 126–131.

    Article  CAS  Google Scholar 

  37. Kuester, S.; Merlini, C.; Barra, G. M. O.; Ferreira, J. C.; Lucas, A.; de, Souza A. C.; Soares, B. G. Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: a comparative study of expanded graphite and carbon black. Compos. Part B: Eng. 2016, 84, 236–247.

    Article  CAS  Google Scholar 

  38. Vega, J.; Rastogi, S.; Peters, G.; Meijer, H. Rheology and reptation of linear polymers ultrahigh molecular weight chain dynamics in the melt. J. Rheol. 2004, 48, 663–678.

    Article  CAS  Google Scholar 

  39. Tapadia, P.; Wang, S. Q. Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys. Rev. Lett. 2006, 96, 016001.

    Article  PubMed  Google Scholar 

  40. Tapadia, P.; Ravindranath, S.; Wang, S. Q. Banding in entangled polymer fluids under oscillatory shearing. Phys. Rev. Lett. 2006, 96, 196001.

    Article  PubMed  Google Scholar 

  41. Xia, X. C.; Yang, W.; Liu, Z. Y.; Zhang, R. Y.; Xie, D. D.; Yang, M. B. Strong shear-driven large scale formation of hybrid shish-kebab in carbon nanofiber reinforced polyethylene composites during the melt second flow. Phys. Chem. Chem. Phys. 2016, 18, 30452–30461.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, S. Q. Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip. In Polymers in confined environments, Springer: 1999; pp 227–275.

  43. Cao, T.; Chen, X.; Lin, Y.; Meng, L.; Wan, C.; Lv, F.; Li, L. Structural evolution of UHMWPE fibers during prestretching far and near melting temperature: an in situ synchrotron radiation small- and wide-angle X-ray scattering study. Macromol. Mater. Eng. 2018, 303, 1700493.

    Article  Google Scholar 

  44. Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. Chain deformation on the formation of shish nuclei under extension flow: an in situ SANS and SAXS study. Macromolecules 2016, 49, 9080–9088.

    Article  CAS  Google Scholar 

  45. Shen, H.; He, L.; Fan, C.; Xie, B.; Yang, W.; Yang, M. Improving the integration of HDPE/UHMWPE blends by high temperature melting and subsequent shear. Mater. Lett. 2015, 138, 247–250.

    Article  CAS  Google Scholar 

  46. Mi, D.; Hou, F.; Zhou, M.; Zhang, J. Improving the mechanical and thermal properties of shish-kebab via partial melting and recrystallization. Eur. Polym. J. 2018, 101, 1–11.

    Article  CAS  Google Scholar 

  47. Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244–254.

    Article  CAS  Google Scholar 

  48. Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of Stably Entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules 2015, 48, 6652–6661.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21627804). The authors express sincere thanks to the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China) for kind help with WAXD and SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, R., Jiang, YX., Leng, J. et al. Synergic Enhancement of High-density Polyethylene through Ultrahigh Molecular Weight Polyethylene and Multi-flow Vibration Injection Molding: A Facile Fabrication with Potential Industrial Prospects. Chin J Polym Sci 39, 756–769 (2021). https://doi.org/10.1007/s10118-021-2545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2545-8

Keywords

Navigation