Skip to main content
Log in

Synthesis of new bio-based polycarbonates derived from terpene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a bio-based polycarbonate has been synthesized successfully from terpene diphenol and diphenyl carbonate by melt polymerization without using any catalysts. The polymerization process involves no usage of toxic phosgene. The reaction parameters such as monomer feed ratio, polymerization temperature and time have been systematically examined. A little excess of diphenyl carbonate for terpene diphenol affords the highest molecular weight. The chemical structure of the product is identified by 1H NMR and FT-IR. The DSC analysis shows that the glass transition temperature of the present bio-based polycarbonate is much higher than that of a conventional bisphenol A-based polycarbonate due to the rigid molecular structure of terpene diphenol. In addition, a series of copolycarbonates with adjustable glass transition temperature are prepared from terpene diphenol and bisphenol A. The present polycarbonate and copolycarbonates with high thermal stability synthesized via an environmental benign process have large potential for bio-based engineering plastics in various industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bozell JJ (2008) Feedstocks for the future-biorefinery production of chemicals from renewable carbon. Clean 36:641–647

    CAS  Google Scholar 

  2. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    Article  CAS  Google Scholar 

  3. Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemistry industry: a review of achievements and prospects. Green Chem 6:544–556

    Article  CAS  Google Scholar 

  4. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  5. Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Klaas MR, Schäfer HJ, Schneider MP (2000) New synthesis with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed 39:2206–2224

    Article  CAS  Google Scholar 

  6. Liu CC, Chang KY, Wang YJ (2010) A novel biodegradable amphiphilic diblock copolymers based on poly(lactic acid) and hyaluronic acid as biomaterials for drug delivery. J Polym Res 17:459–469

    Article  CAS  Google Scholar 

  7. Xu H, Teng C, Mao Z, Yu M (2012) Study on the preparation and properties of lactic acid based copolymer. J Polym Res 19:9960

    Article  Google Scholar 

  8. Luo SH, Wang QF, Xiong JF, Wang ZY (2012) Synthesis of biodegradable material poly(lactic acid-co-sorbitol) via direct melt polycondensation and its reaction mechanism. J Polym Res 19:9962

    Article  Google Scholar 

  9. Fan XD, Deng Y, Waterhouse J, Pfromm P (1998) Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides. J Appl Polym Sci 68:305–314

    Article  CAS  Google Scholar 

  10. Bou JJ, Iribarren I, Muñoz-Guerra S (1994) Synthesis and properties of stereoregular polyamides derived from L-tartaric acid: poly[(2S, 3S)-2, 3-Dimethoxybutylene alkanamide]s. Macromolecules 27:5263–5270

    Article  CAS  Google Scholar 

  11. Alam M, Ashraf SM, Ahmad S (2008) Pyridine-poly(urethane ester amide) coatings from linseed oil. J Polym Res 15:343–350

    Article  CAS  Google Scholar 

  12. Djordjevic I, Choudhury NR, Dutta NK, Kumar S (2009) Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 50:1682–1691

    Article  CAS  Google Scholar 

  13. Miao S, Zhang S, Su Z, Wang P (2008) Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials. J Polym Sci A Polym Chem 46:4243–4248

    Article  CAS  Google Scholar 

  14. Dong W, Li H, Chen M, Ni Z, Zhao J, Yang H (2011) Biodegradable bio-based polyesters with controllable photo-crosslinkability, thermal and hydrolytic stability. J Polym Res 18:1239–1247

    Article  CAS  Google Scholar 

  15. Jasinska L, Koning CE (2010) Unsaturated, biobased polyesters and their cross-linking via radical copolymerization. J Polym Sci A Polym Chem 48:2885–2895

    Article  CAS  Google Scholar 

  16. Hashimoto K, Hashimoto N, Kamaya T, Yoshioka J, Okawa H (2011) Synthesis and properties of bio-based polyurethanes bearing hydroxyl groups derived from alditols. J Polym Sci A Polym Chem 49:976–985

    Article  CAS  Google Scholar 

  17. Desai SD, Emanuel AL, Sinha VK (2003) Biomaterial based polyurethane adhesive for bonding rubber and wood joints. J Polym Res 10:275–281

    Article  CAS  Google Scholar 

  18. Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835

    Article  CAS  Google Scholar 

  19. Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H (2010) Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromolecules 11:1202–1211

    Article  CAS  Google Scholar 

  20. Oprea S (2012) Novel quinoline-based polyurethane elastomers. The effect of the hard segment structure in properties enhancement. J Polym Res 19:9697

    Article  Google Scholar 

  21. Wang CS, Shieh JY (1999) Synthesis and flame retardancy of phosphorous containing polycarbonate. J Polym Res 6:149–154

    Article  CAS  Google Scholar 

  22. Woo BG, Choi KY, Song KH, Lee SH (2001) Melt polymerization of bisphenol-A and diphenyl carbonate in a semibatch reactor. J Appl Polym Sci 80:1253–1266

    Article  CAS  Google Scholar 

  23. Haba O, Itakura I, Ueda M, Kuze S (1999) Synthesis of polycarbonate from dimethyl carbonate and bispheol-A through a non-phosgene process. J Polym Sci A Polym Chem 37:2087–2093

    Article  CAS  Google Scholar 

  24. Fukuoka S, Tojo M, Hachiya H, Aminaka M, Hasegawa K (2007) Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production form CO2 without using phosgene. Polym J 39:91–114

    Article  CAS  Google Scholar 

  25. Okuyama K, Sugiyama J, Nagahata R, Asai M, Ueda M, Takeuchi K (2003) Direct synthesis of polycarbonate from carbon monoxide and bisphenol A catalyzed by Pd-carbene complex. Macromolecules 36:6953–6955

    Article  CAS  Google Scholar 

  26. Kim J, Gracz HS, Roberts GW, Kisrow DJ (2008) Spectroscopic analysis of poly(bisphenol A carbonate) using high resolution 13C and 1H NMR. Polymer 49:394–404

    Article  CAS  Google Scholar 

  27. Hammani S, Moulai-Mostefa N, Benyahia L, Tassin JF (2012) Effects of composition and extrusion parameters on the morphological development and rheological properties of PP/PC blends. Co-continuity investigation. J Polym Res 19:9940

    Article  Google Scholar 

  28. Sweileh BA, Al-Hiari YM (2006) Synthesis and thermal properties of polycarbonates based on bisphenol A by single-phase organic solvent polymerization. J Polym Res 13:181–191

    Article  CAS  Google Scholar 

  29. Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S (2003) A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem 5:497–507

    Article  CAS  Google Scholar 

  30. Wu R, Al-Azemi TF, Bisht KS (2008) Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate. Biomacromolecules 9:2921–2928

    Article  CAS  Google Scholar 

  31. Mei H, Zhong Z, Long F, Zhuo R (2006) Synthesis and characterization of novel glycerol-derived polycarbonate with pendant hydroxyl groups. Macromol Rapid Commun 27:1894–1899

    Article  CAS  Google Scholar 

  32. Xia H, Suo ZY, Qiang GJ, Chang CJ (1995) Synthesis, characterization, and degradation of a novel L-tyrosine-derived polycarbonate for potential biomaterial applications. J Appl Polym Sci 110:2168–2178

    Article  Google Scholar 

  33. Schmidhauser JC (1995) Patent JP 7-53430

  34. Morikawa T, Fujii K (1998) Patent JP 8-198791

  35. Firdaus M, Espinosa LM, Meier MAR (2011) Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 44:7253–7262

    Article  CAS  Google Scholar 

  36. Satoh K, Sugiyama H, Kamigaito M (2006) Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives. Green Chem 8:878–882

    Article  CAS  Google Scholar 

  37. Kimura H, Murata Y, Matsumoto A, Hasegawa K, Ohtsuka K, Fukuda A (1999) New thermosetting resin from terpenediphenol-based benzoxazine and epoxy resin. J Appl Polym Sci 74:2266–2273

    Article  CAS  Google Scholar 

  38. Serini V (2000) Polycarbonates. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  39. Wielgosz Z, Dobkowski Z, Krajewski B (1972) Studies on polycarbonate preparation by the interfacial polycondensation method. Eur Polym J 8:1113–1119

    Article  CAS  Google Scholar 

  40. Hersh SN, Choi KY (1990) Melt transesterification of diphenyl carbonate with bisphenol A in a batch reactor. J Appl Polym Sci 41:1033–1046

    Article  CAS  Google Scholar 

  41. Darensbourg DJ, Wilson SJ (2011) Synthesis of poly(indene carbonate) from indene oxide and carbon dioxide—a polycarbonate with a rigid backbone. J Am Chem Soc 133:18610–18613

    Article  CAS  Google Scholar 

  42. Güner FS, Yağci Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Article  Google Scholar 

  43. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the gift of TPD from Yasuhara Chemical Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Uyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y., Uyama, H. Synthesis of new bio-based polycarbonates derived from terpene. J Polym Res 19, 15 (2012). https://doi.org/10.1007/s10965-012-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0015-2

Keywords

Navigation