Skip to main content

Advertisement

Log in

Biodegradable Polymers—a Review on Properties, Processing, and Degradation Mechanism

  • Review paper
  • Published:
Circular Economy and Sustainability Aims and scope Submit manuscript

Abstract

Pollutants in the environment are growing as a result of the use of plastic. Our environment and food chain contain plastic particles and other pollutants made of plastic, threatening human health. From this point of view, biodegradable plastic material focuses on building a more sustainable, greener world with a lower impact on the environment. This evaluation should be kept in view of the objectives and priorities for producing a wide variety of biodegradable plastics throughout their entire life cycle. The properties of biodegradable plastics are similar to traditional plastics. Additionally, the greatest benefits of biodegradable polymeric materials are the preservation of fossil fuel resources and the reduction of environmental pollution in the environment of sustainable development. This review summarizes the main synthesis methods and the most common type of biodegradable polymers. Lastly, the biodegradation mechanism of biodegradable polymers is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

References    

  1. Ricciardi M, Pironti C, Motta O, Miele Y, Proto A, Montano L (2021) Microplastics in the aquatic environment: occurrence, persistence, analysis, and human exposure. Water 13(7):973

    CAS  Google Scholar 

  2. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):1–11

    Google Scholar 

  3. Yin G, Yang X (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27(2):38

    CAS  Google Scholar 

  4. Moshood T, Nawanir G, Mahmud F, Mohamad F, Ahmad M, AbdulGhani A (2022) Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Curr Res Green Sustain Chem 5:100273

    CAS  Google Scholar 

  5. Steven S, Mardiyati Y, Mar’atusShoimah S, Rizkiansyah R, PujiSantosa S, Suratman R (2021) Preparation and characterization of nanocrystalline cellulose from Cladophora sp. Algae. Int J Adv Sci Eng Inf Technol 11(3):1035

    Google Scholar 

  6. Tábi T (2022) Biodegradable bio-based plastics: compostable or recyclable? Express Polym Lett 16(2):115–115

    Google Scholar 

  7. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54(11):3210–3215

    CAS  Google Scholar 

  8. Di Bartolo A, Infurna G, Dintcheva N (2021) A review of bioplastics and their adoption in the circular economy. Polymers 13(8):1229

    PubMed  PubMed Central  Google Scholar 

  9. Wang J, Tan Z, Peng J, Qiu Q, Li M (2016) The behaviors of microplastics in the marine environment. Mar Environ Res 113:7–17

    CAS  PubMed  Google Scholar 

  10. Ghimire S, Flury M, Scheenstra E, Miles C (2020) Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci Total Environ 703:135577

    ADS  CAS  PubMed  Google Scholar 

  11. Nanda S, Patra B, Patel R, Bakos J, Dalai A (2021) Innovations in applications and prospects of bioplastics and biopolymers: a review. Environ Chem Lett 20(1):379–395

    PubMed  PubMed Central  Google Scholar 

  12. Gunawardene O, Gunathilake C, Amaraweera S, Fernando N, Wanninayaka D, Manamperi A, Kulatunga A, Rajapaksha S, Dassanayake R, Fernando C, Manipura A (2021) Compatibilization of starch/synthetic biodegradable polymer blends for packaging applications: a review. J Compos Sci 5(11):300

    CAS  Google Scholar 

  13. Yang J, Ching Y, Chuah C (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasile C, Cazacu G (2013) Biocomposites and nanocomposites containing lignin. Biopolymer Nanocomposites, pp. 565–598.

  15. Luzi F et al (2019) Bio- and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials 12(3):471

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murariu M et al (2022) Recent advances in production of ecofriendly polylactide (pla)–calcium sulfate (anhydrite II) composites: from the evidence of filler stability to the effects of PLA matrix and filling on key properties. Polymers 14(12):2360

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dufresne A, Thomas S, Pothan LA (2013) Bionanocomposites: state of the art, challenges, and opportunities. Biopolymer Nanocomposites, pp. 1–10.

  18. Dintcheva NT et al (2020) Natural compounds as sustainable additives for biopolymers. Polymers 12(4):732

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Post W et al (2021) Effect of mineral fillers on the mechanical properties of commercially available biodegradable polymers. Polymers 13(3):394

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morreale M et al (2015) Mechanical, thermomechanical and reprocessing behavior of green composites from biodegradable polymer and wood flour. Materials 8(11):7536–7548

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varyan I et al (2022) Biodegradability of polyolefin-based compositions: effect of natural rubber. Polymers 14(3):530

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Wei J, Zhu Y, George-Ufot G (2020) Untangling the relationship between corporate environmental performance and corporate financial performance: the double-edged moderating effects of environmental uncertainty. J Clean Prod 263:121584

    Google Scholar 

  23. Moshood T, Nawanir G, Mahmud F, Mohamad F, Ahmad M, AbdulGhani A (2022) Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Clean Eng Technol 6:100404

    Google Scholar 

  24. ASTM D6400–12 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal and industrial facilities. ASTM

    Google Scholar 

  25. Hubbe M, Lavoine N, Lucia L, Dou C (2020) Formulating bioplastic composites for biodegradability, recycling, and performance: a review. BioResources 16(1):2021–2083

    Google Scholar 

  26. Muthuraj R, Misra M, Mohanty A (2017) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135(24):45726

    Google Scholar 

  27. Scaffaro R et al (2021) Green composites based on PLA and agricultural or marine waste prepared by FDM. Polymers 13(9):1361

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Swetha TA et al (2023) A comprehensive review on polylactic acid (PLA) – synthesis, processing and application in food packaging. Int J Biol Macromol 234:123715

    CAS  PubMed  Google Scholar 

  29. Reddy V, Ramanaiah S, Reddy M, Chang Y (2022) Review of the developments of bacterial medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Bioengineering 9(5):225

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagarajan V, Mohanty A, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916

    CAS  Google Scholar 

  31. Elsawy M, Kim K, Park J, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352

    CAS  Google Scholar 

  32. Atiwesh G, Mikhael A, Parrish C, Banoub J, Le T (2021) Environmental impact of bioplastic use: a review. Heliyon 7(9):e07918

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X (2013) An optimized design of injection molding process parameters for supporting-foot plastic part based on CAE. Adv Mater Res 721:648–651

    ADS  Google Scholar 

  34. Chan C, Vandi L, Pratt S, Halley P, Richardson D, Werker A, Laycock B (2020) Mechanical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs). J Polym Environ 28(5):1571–1577

    CAS  Google Scholar 

  35. Meereboer K, Misra M, Mohanty A (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22(17):5519–5558

    CAS  Google Scholar 

  36. Rivera-Briso A, Serrano-Aroca Á (2018) Poly (3-hydroxybutyrate-co-3- hydroxyvalerate): enhancement strategies for advanced applications. Polymers 10(7):732

    PubMed  PubMed Central  Google Scholar 

  37. Naser A, Deiab I, Darras B (2021) Poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11(28):17151–17196

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalton B, Bhagabati P, De Micco J, Padamati R, O’Connor K (2022) A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 12(3):319

    CAS  Google Scholar 

  39. Choi S, Cho I, Lee Y, Kim Y, Kim K, Lee S (2020) Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv Mater 32(35):1907138

    CAS  Google Scholar 

  40. Kumar V, Sehgal R, Gupta R (2021) Blends and composites of polyhydroxyalkanoates (PHAs) and their applications. Eur Polymer J 161:110824

    CAS  Google Scholar 

  41. Li Y, Yu H, Li W, Liu Y, Lu X (2021) Recyclable polyhydroxyalkanoates via a regioselective ring-opening polymerization of α, β-disubstituted β-lactone monomers. Macromolecules 54(10):4641–4648

    ADS  CAS  Google Scholar 

  42. Zarski A, Bajer K, Kapuśniak J (2021) Review of the most important methods of improving the processing properties of starch toward non-food applications. Polymers 13(5):832

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mottiar Y, Altosaar I (2011) Iodine sequestration by amylose to combat iodine deficiency disorders. Trends Food Sci Technol 22(6):335–340

    CAS  Google Scholar 

  44. Cornejo-Ramírez Y, Martínez-Cruz O, Del Toro-Sánchez C, Wong-Corral F, Borboa- Flores J, Cinco-Moroyoqui F (2018) The structural characteristics of starches and their functional properties. CyTA - J Food 16(1):1003–1017

    Google Scholar 

  45. Biliaderis C (2010) ChemInform abstract: structures and phase transitions of starch polymers. ChemInform, 29(47), p.no-no.

  46. Helen Nwakego A-O et al (2022) Physicochemical, functional, pasting properties and Fourier transform infrared spectroscopy of native and modified Cardaba Banana (Musa Abb) starches. Food Chem Adv 1:100076

    Google Scholar 

  47. Liu C et al (2022) Influence of phosphorylation and acetylation on structural, physicochemical and functional properties of chestnut starch. Polymers 14(1):172

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zia-ud-Din, Xiong H, Fei P (2017) Physical and chemical modification of starches: a review. Crit Rev Food Sci Nutr, 57(12), pp. 2691–2705

  49. Bhatt P et al (2022) Structural modifications and strategies for native starch for applications in advanced drug delivery. Biomed Res Int 2022:1–14

    Google Scholar 

  50. Bensaad DE et al (2022) Chemical modifications of starch; a prospective for sweet potato starch. Jordan J Agric Sci 18(4):293–308

    Google Scholar 

  51. Wang Z et al (2022) Cassava starch: chemical modification and its impact on functional properties and digestibility, a Review. Food Hydrocoll 129:107542

    CAS  Google Scholar 

  52. Trela VD, Ramallo AL, Albani OA (2020) Synthesis and characterization of acetylated cassava starch with different degrees of substitution. Braz Arch Biol Technol.

  53. Zhang C, Xu D, Zhu Z (2014) Octenylsuccinylation of cornstarch to improve its sizing properties for polyester/cotton blend spun yarns. Fibers Polym 15(11):2319–2328

    CAS  Google Scholar 

  54. Liu J, Yang R, Yang F (2015) Effect of the starch source on the performance of cationic starches having similar degree of substitution for papermaking using deinked pulp. BioResources 10(1):922–931

    Google Scholar 

  55. Chung H-J, Jeong H-Y, Lim S-T (2003) Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch. Carbohyd Polym 54(4):449–455

    CAS  Google Scholar 

  56. Faridah DN, Rahayu WP, Apriyadi MS (2013) Modification of arrowroot starch through acid hydrolysis and autoclaving-cooling cycling treatment to produce resistant starch type 3. JTIP 23:61–69

    Google Scholar 

  57. Fonseca LM et al (2015) Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT Food Sci Technol 60(2):714–720

    CAS  Google Scholar 

  58. Rahim A et al (2022) Effect of ph and acetic anhydride concentration on physicochemical characteristics of acetylated sago starch. IOP Conf Ser: Earth Environ Sci 1107(1):012124

    MathSciNet  Google Scholar 

  59. Chen P, Yu L, Simon G, Liu X, Dean K, Chen L (2011) Internal structures and phase-transitions of starch granules during gelatinization. Carbohyd Polym 83(4):1975–1983

    CAS  Google Scholar 

  60. Jaysree R, Subhash Chandra K, Sankar T (2019) Biodegradability of synthetic plastics – a review. Int J ChemTech Res 12(6):125–133

    CAS  Google Scholar 

  61. Technische Textilien, 2021. Plastic waste and recycling — environmental impact, societal issues, prevention, and solutions. 64(2), pp.78–78.

  62. Bher A et al (2022) Biodegradation of biodegradable polymers in mesophilic aerobic environments. Int J Mol Sci 23(20):12165

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Quecholac-Piña X et al (2020) Degradation of plastics under anaerobic conditions: a short review. Polymers 12(1):109

    PubMed  PubMed Central  Google Scholar 

  64. Takashima M, Yaguchi J (2020) High-solids thermophilic anaerobic digestion of sewage sludge: effect of ammonia concentration. J Mater Cycles Waste Manage 23(1):205–213

    Google Scholar 

  65. El Asri O (2023) Anaerobic biodegradation: the anaerobic digestion process. Handbook of Biodegradable Materials, pp. 85–110.

  66. Bajpai P (2017) Basics of anaerobic digestion process. Anaerobic Technology in Pulp and Paper Industry, pp. 7–12.

  67. Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 06(03):205–212

    Google Scholar 

  68. Hatti-Kaul R, Mattiasson B (2016) Anaerobes in industrial- and environmental biotechnology. Advances in Biochemical Engineering/Biotechnology, pp. 1–33.

  69. Slezak R, Krzystek L, Ledakowicz S (2015) Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Manage 43:293–299

    CAS  Google Scholar 

  70. Fredi G, Dorigato A (2021) Recycling of bioplastic waste: a review. Adv Ind Eng Polym Res 4(3):159–177

    CAS  Google Scholar 

  71. Cosquer R, Pruvost S, Gouanvé F (2021) Improvement of barrier properties of biodegradable polybutylene succinate/graphene nanoplatelets nanocomposites prepared by melt process. Membranes 11(2):151

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lule Z, Kim J (2020) Thermally conductive polybutylene succinate composite filled with Si-O-N-C functionalized silicon carbide fabricated via low-speed melt extrusion. Eur Polymer J 134:109849

    CAS  Google Scholar 

  73. Lule Z, Kim J (2021) Compatibilization effect of silanized SiC particles on polybutylene adipate terephthalate/polycarbonate blends. Mater Chem Phys 258:123879

    CAS  Google Scholar 

  74. Lee Y, Wu T (2021) Synthesis and physical properties of biodegradable nanocomposites fabricated using acrylic acid-grafted poly(butylene carbonate-co- terephthalate) and organically-modified layered zinc phenylphosphonate. J Polym Environ 30(3):896–906

    Google Scholar 

  75. Meng Q, Pepper K, Cheng R, Howdle S, Liu B (2016) Effect of supercritical CO2on the copolymerization behavior of cyclohexene oxide/CO2and copolymer properties with DMC/Salen-Co(III) catalyst system. J Polym Sci, Part A: Polym Chem 54(17):2785–2793

    ADS  CAS  Google Scholar 

  76. Ogunsona E, Misra M, Mohanty A (2016) Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. J Appl Polym Sci, 134(4).

  77. Muthuraj R, Mekonnen T (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: co-polymers and polymer blends. Polymer 145:348–373

    CAS  Google Scholar 

  78. Dong T, Yun X, Shi C, Sun W, Fan G, Jin Y (2014) Improved mechanical and barrier properties of PPC multilayer film through interlayer hydrogen bonding interaction. Polym Sci, Ser A 56(6):830–836

    CAS  Google Scholar 

  79. Li X, Meng L, Zhang Y, Qin Z, Meng L, Li C, Liu M (2022) Research and application of polypropylene carbonate composite materials: a review. Polymers 14(11):2159

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 6(12):2179–2195

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Panchal S, Vasava D (2020) Biodegradable polymeric materials: synthetic approach. ACS Omega 5(9):4370–4379

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abd El-Magied M, Galhoum A, Atia A, Tolba A, Maize M, Vincent T, Guibal E (2017) Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids Surf, A 529:580–593

    CAS  Google Scholar 

  83. Ardean C, Davidescu C, Nemeş N, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V (2021) Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci 22(14):7449

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo B, Ma P (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500

    CAS  Google Scholar 

  85. Hu Y, Daoud W, Cheuk K, Lin C (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9(3):133

    ADS  PubMed  PubMed Central  Google Scholar 

  86. Adhami W, Bakkour Y, Rolando C (2021) Polylactones synthesis by enzymatic ring opening polymerization in flow. Polymer 230:124040

    CAS  Google Scholar 

  87. Butreddy A, Gaddam R, Kommineni N, Dudhipala N, Voshavar C (2021) PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci 22(16):8884

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Arrieta M, López J, Rayón E, Jiménez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym Degrad Stab 108:307–318

    CAS  Google Scholar 

  89. Razak N, Mohamed R (2021) Antimicrobial sustainable biopolymers for biomedical plastics applications – an overview. Polimery 66(11–12):574–583

    CAS  Google Scholar 

  90. Lim B, Thian E (2022) Biodegradation of polymers in managing plastic waste — a review. Sci Total Environ 813:151880

    ADS  CAS  PubMed  Google Scholar 

  91. Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates- eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8(3–4):56–77

    Google Scholar 

  92. Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7):243

    PubMed  PubMed Central  Google Scholar 

  93. Pellis A, Comerford J, Weinberger S, Guebitz G, Clark J, Farmer T (2019) Enzymatic synthesis of lignin derivable pyridine-based polyesters for the substitution of petroleum derived plastics. Nat Commun 10(1):1762

    ADS  PubMed  PubMed Central  Google Scholar 

  94. Gu Q, Maslanka W, Cheng H (2008) Enzyme-catalyzed polyamides and their derivatives. ACS Symposium Series, pp.309–319.

  95. Chao Q, Ding Y, Chen Z, Xiang M, Wang N, Gao X (2020) Recent progress in chemo-enzymatic methods for the synthesis of N-glycans. Front Chem 8:513

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cai X, Wang N, Lin X (2006) The preparation of polymerizable, optically active non-steroidal anti-inflammatory drugs derivatives by irreversible enzymatic methods. J Mol Catal B Enzym 40(1–2):51–57

    CAS  Google Scholar 

  97. Knani D, Gutman A, Kohn D (1993) Enzymatic polyesterification in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening polymerization of ε-caprolactone. J Polym Sci Part A: Polym Chem 31(5):1221–1232

    ADS  CAS  Google Scholar 

  98. Narancic T, Cerrone F, Beagan N, O’Connor K (2020) Recent advances in bioplastics: application and biodegradation. Polymers 12(4):920

    CAS  PubMed  PubMed Central  Google Scholar 

  99. ASTM D 6400-99, 1976. Standard specification for compostable plastics, annual book of standards. ASTM, Philadelphia

  100. Gu J (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegradation 52(2):69–91

    CAS  Google Scholar 

  101. Billingham N (2001) Handbook of polymer degradation. Polym Degrad Stab 74(3):585

    Google Scholar 

  102. Luckachan G, Pillai C (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    CAS  Google Scholar 

  103. Behera S et al (2022) Polyhydroxyalkanoates, the bioplastics of microbial origin: properties, biochemical synthesis, and their applications. Chemosphere 294:133723

    CAS  PubMed  Google Scholar 

  104. Sehgal R, Gupta R (2020) Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3Biotech 10(12):549

    Google Scholar 

  105. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    ADS  PubMed  PubMed Central  Google Scholar 

  106. Haque MJ, Rahman MS (2023) Biodegradation of industrial materials. Handbook of Biodegradable Materials, pp. 1407–1448.

  107. Mohanan N, Montazer Z, Sharma P, Levin D (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

    PubMed  PubMed Central  Google Scholar 

  108. Kumar Tiwari A, Gautam M, Maurya H (2018) Recent development of biodegradation techniques of polymer. Int J Res 6(6):414–452

    Google Scholar 

  109. Liu L, Xu M, Ye Y, Zhang B (2022) On the degradation of (micro)plastics: degradation methods, influencing factors, environmental impacts. Sci Total Environ 806:151312

    ADS  CAS  PubMed  Google Scholar 

  110. Filiciotto L, Rothenberg G (2020) Biodegradable plastics: standards, policies, and impacts. Chemsuschem 14(1):56–72

    PubMed  PubMed Central  Google Scholar 

  111. Pepelnjak T et al (2023) Influence of process parameters on the characteristics of additively manufactured parts made from advanced biopolymers. Polymers 15(3):716

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Flórez M, Cazón P, Vázquez M (2023) Selected biopolymers’ processing and their applications: a review. Polymers 15(3):641

    PubMed  PubMed Central  Google Scholar 

  113. Tatara RA (2017) Compression molding. Applied Plastics Engineering Handbook, pp. 291–320.

  114. Udayakumar GP et al (2021) Ecofriendly biopolymers and composites: preparation and their applications in water-treatment. Biotechnol Adv 52:107815

    CAS  PubMed  Google Scholar 

  115. Scaffaro R, Citarrella MC, Gulino EF (2022) Opuntia Ficus indica based green composites for NPK fertilizer controlled release produced by compression molding and fused deposition modeling. Compos A Appl Sci Manuf 159:107030

    CAS  Google Scholar 

  116. Valencia-Sullca C et al (2018) Physical and antimicrobial properties of compression-molded cassava starch-chitosan films for meat preservation. Food Bioprocess Technol 11(7):1339–1349

    CAS  Google Scholar 

  117. Mallick PK (2017) Compression molding. Processing of Polymer Matrix Composites, pp. 171–200.

  118. Bealer EJ et al (2020) Protein–polysaccharide composite materials: fabrication and applications. Polymers 12(2):464

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Guerrero P et al (2019) Crosslinking of chitosan films processed by compression molding. Carbohyd Polym 206:820–826

    CAS  Google Scholar 

  120. Marçal RLSB (2016) Biomaterials produced by injection molding. Reference Module in Materials Science and Materials Engineering [Preprint].

  121. Do Val Siqueira L et al (2021) Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Curr Opin Food Sci 38:122–130

    CAS  Google Scholar 

  122. Félix M et al (2015) Development of crayfish protein-PCL biocomposite material processed by injection moulding. Compos B Eng 78:291–297

    Google Scholar 

  123. Relinque J et al (2019) Development of surface-coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers 11(3):400

    PubMed  PubMed Central  Google Scholar 

  124. Liu W et al (2020) Preparation, reinforcement and properties of thermoplastic starch film by Film Blowing. Food Hydrocoll 108:106006

    CAS  Google Scholar 

  125. McKeen LW (2017) Production of films, containers, and membranes. Permeability Properties of Plastics and Elastomers, pp. 41–60

  126. Mendes JF et al (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohyd Polym 137:452–458

    CAS  Google Scholar 

  127. Scaffaro R et al (2022) Green composites based on biodegradable polymers and Anchovy (engraulis encrasicolus) waste suitable for 3D printing applications. Compos Sci Technol 230:109768

    CAS  Google Scholar 

  128. Ahn J-H et al (2021) 3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process. Addit Manuf 41:101988

    CAS  Google Scholar 

  129. Farazin A et al (2023) 3D bio-printing for use as bone replacement tissues: a review of Biomedical Application. Biomed Eng Adv 5:100075

    Google Scholar 

  130. Olegovich Osidak E et al (2020) Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprinting 6(3)

  131. Rojas-Martínez LE et al (2020) 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: effect of geometry and structure. Eur Polymer J 141:110088

    Google Scholar 

  132. Li N et al (2021) 3D printing to innovate biopolymer materials for demanding applications: a review. Mater Today Chem 20:100459

    CAS  Google Scholar 

  133. Kjeldsen A, Price M, Lilley C, Guzniczak E, Archer I (2018) A review of standards for biodegradable plastics. Ind Biotechnol Innov Cent 33(1)

  134. Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polym Degrad Stab 137:122–130

    CAS  Google Scholar 

  135. Joseph E et al. (2022) Fundamentals of polymer biodegradation mechanisms. Biodegradable Polymers in the Circular Plastics Economy pp. 17–58

  136. Rostamzad H (2022) Active and intelligent biodegradable films and polymers. Biodegradable Polymers, Blends and Composites pp. 415–430

  137. Salazar SA, Abdulhameed S, Sánchez M del (2023) Biodegradation of polymers. Biodegradable Polymers pp. 1–12

  138. Zeenat et al (2021) Plastics degradation by microbes: a sustainable approach. J King Saud Univ - Sci 33(6):101538

    Google Scholar 

  139. Sharma R et al (2020) Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(4):106

    CAS  Google Scholar 

  140. El Menofy NG, Khattab AM (2023) Plastics biodegradation and Biofragmentation. Handb Biodegradable Mater pp. 571–600

  141. Folino A et al (2020) Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12(15):6030

    CAS  Google Scholar 

  142. Glaser J (2019) Biological degradation of polymers in the environment. Plast Environ.

  143. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17(9):1513–1521

    CAS  PubMed  Google Scholar 

  144. Dimassi SN et al (2022) Degradation-fragmentation of marine plastic waste and their environmental implications: a critical review. Arab J Chem 15(11):104262

    CAS  Google Scholar 

  145. Strafella P et al (2022) Distribution of microplastics in the marine environment. Handb Microplastics Environ pp. 813–847

  146. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2(1):1–32

    CAS  Google Scholar 

  147. Keiluweit M et al (2017) Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat Commun 8(1):1771

    ADS  PubMed  PubMed Central  Google Scholar 

  148. Groeneveld I et al (2023) Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – an overview. Dyes Pigm 210:110999

    CAS  Google Scholar 

  149. Rashid MI et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    CAS  PubMed  Google Scholar 

  150. Rosenboom J-G, Langer R, Traverso G (2022) Bioplastics for a circular economy. Nat Rev Mater 7(2):117–137

    ADS  PubMed  PubMed Central  Google Scholar 

  151. Ahsan WA et al (2023) Biodegradation of different types of bioplastics through composting—a recent trend in Green Recycling. Catalysts 13(2):294

    CAS  Google Scholar 

  152. Law KL, Narayan R (2021) Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater 7(2):104–116

    ADS  Google Scholar 

  153. Scaffaro R et al (2019) Degradation and recycling of films based on biodegradable polymers: a short review. Polymers 11(4):651

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation”. Polym Degrad Stab 93(3):561–584

    CAS  Google Scholar 

  155. Ramasubramanian G, Madbouly S (2015) Thermal and oxidative degradation behavior of polymers and nanocomposites. Reactions and Mechanisms in Thermal Analysis of Advanced Materials, pp. 127–164.

  156. Fukushima K, Feijoo JL, Yang M-C (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL Blend. Eur Polymer J 49(3):706–717

    CAS  Google Scholar 

  157. Tsutsumi C et al (2003) The enzymatic degradation of commercial biodegradable polymers by some lipases and chemical degradation of them. Macromol Symp 197(1):431–442

    CAS  Google Scholar 

  158. Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly (lactic acid) (pla)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TIO2 as filler. Polym Testing 45:93–100

    CAS  Google Scholar 

  159. Müller C, Townsend K, Matschullat J (2012) Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles. Sci Total Environ 416:464–467

    ADS  PubMed  Google Scholar 

  160. Yin G-Z, Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27(2):32

    Google Scholar 

  161. Gomaa M (2022) Biodegradable plastics based on algal polymers: recent advances and applications. Handb Biodegradable Mater pp. 1–31

  162. Samir A et al (2022) Recent advances in biodegradable polymers for sustainable applications. Mater Degrad 6(1):68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception, design, and manuscript preparation.

Corresponding author

Correspondence to Oznur Kaya Cakmak.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cakmak, O.K. Biodegradable Polymers—a Review on Properties, Processing, and Degradation Mechanism. Circ.Econ.Sust. 4, 339–362 (2024). https://doi.org/10.1007/s43615-023-00277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43615-023-00277-y

Keywords

Navigation