Skip to main content
Log in

Two Populations Mean-Field Monomer–Dimer Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A two populations mean-field monomer–dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It is easy to check that \(f_\alpha (d)\rightarrow -\infty \) as \(d\searrow 0\), \(f_\alpha (d)\rightarrow \infty \) as \(d\nearrow \alpha \), \(f_\alpha '>0\), \(f_\alpha ''\) vanishes exactly once.

References

  1. Alberici, D.: A cluster expansion approach to the Heilmann-Lieb liquid crystal model. J. Stat. Phys. 162(3), 761–791 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alberici, D., Contucci, P.: Solution of the monomer-dimer model on locally tree-like graphs. Rigorous results. Commun. Math. Phys. 331, 975–1003 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alberici, D., Contucci, P., Mingione, E.: A mean-field monomer-dimer model with attractive interaction. Exact solution and rigorous results. J. Math. Phys. 55, 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alberici, D., Contucci, P., Mingione, E.: The exact solution of a mean-field monomer-dimer model with attractive potential. Europhys. Lett. 106, 1–5 (2014)

    Article  MATH  Google Scholar 

  5. Alberici, D., Contucci, P., Mingione, E.: A mean-field monomer-dimer model with randomness. Exact solution and rigorous results. J. Stat. Phys. 160, 1721–1732 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Alberici, D., Contucci, P., Fedele, M., Mingione, E.: Limit theorems for monomer-dimer mean-field models with attractive potential. Commun. Math. Phys. 346(3), 781–799 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Barra, A., Genovese, G., Guerra, F.: Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A 44, 24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barra, A., Contucci, P., Sandell, R., Vernia, C.: An analysis of a large dataset on immigrant integration in Spain. The statistical mechanics perspective on social action. Sci. Rep. 4, 4174 (2014)

    Article  ADS  Google Scholar 

  9. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean-field spin-glasses. Rigorous results. Annales Henri Poincaré 16(3), 691–708 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Contucci, P., Vernia, C.: Alienation in italian cities. Social network fragmentation from collective data. preprint: https://arxiv.org/pdf/1410.0501.pdf

  11. Disertori, M., Giuliani, A.: The nematic phase of a system of long hard rods. Commun. Math. Phys. 323(1), 143–175 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Probab. Theory Relat. Fields 44, 117–139 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Fedele, M., Contucci, P.: Scaling limits for multi-species statistical mechanics mean-field models. J. Stat. Phys. 144, 1186 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Giuliani, A., Jauslin, I., Lieb, E.H.: A Pfaffian formula for monomer-dimer partition functions. J. Stat. Phys. 163(2), 211–238 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Heilmann, O.J., Lieb, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Heilmann, O.J., Lieb, E.H.: Lattice models for liquid crystals. J. Stat. Phys. 20, 680–693 (1979)

    ADS  MathSciNet  Google Scholar 

  18. Karp, R., Sipser, M.: Maximum matchings in sparse random graphs. In: Proceedings of the 22nd Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, pp. 364–375 (1981)

  19. Moessner, R., Raman, K.S.: Quantum Dimer Models. In: Introduction to Frustrated Magnetism, pp. 437–479 Springer, Berlin (2011)

  20. Panchenko, D.: The free energy in a multi-species Sherrington-Kirkpatrick model. Ann. Probab. 43(6), 3494–3513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roberts, J.K.: Some properties of mobile and immobile adsorbed films. Proc. Camb. Philos. Soc. 34, 399–411 (1938)

    Article  ADS  Google Scholar 

  22. Zdeborová, L., Mézard, M.: The number of matchings in random graphs. J. Stat. Mech. 5, P05003 (2006)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Pierluigi Contucci for bringing the problem to our attention and we acknowledge financial support by GNFM-INdAM Progetto Giovani 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Mingione.

Appendix

Appendix

Here we give a directed proof of the existence of the thermodynamic limit for the pressure density in the particular case

$$\begin{aligned} J=0 \ ,W=\begin{pmatrix}w_A &{} w_{AB}\\ w_{AB} &{} w_B\end{pmatrix} =\begin{pmatrix}e^{h_A} &{} e^{h_{AB}}\\ e^{h_{AB}} &{} e^{h_B}\end{pmatrix} >0 \ . \end{aligned}$$
(40)

where \(W>0\) means that the matrix W is positive definite. This proof is independent from Theorem 1 and the strategy follows a basic idea introduced in [15] in the context of Spin Glass Theory. In this case the partition function (7) admits a representation in terms of Gaussian moments:

$$\begin{aligned} Z_N \,=\, \sum _{\Delta \in \mathscr {D}_N} \left( \frac{w_A}{N}\right) ^{D_A}\left( \frac{w_B}{N}\right) ^{D_B}\left( \frac{w_{AB}}{N}\right) ^{D_{AB}} \,=\, \mathbb E\left[ (1+\xi _A)^{N_A}(1+\xi _B)^{N_B}\right] ,\nonumber \\ \end{aligned}$$
(41)

where \(\xi =(\xi _A,\xi _B)\) is a centred Gaussian vector of covariance matrix \(\frac{1}{N}W\) (the hypothesis of positive definiteness is crucial) and \(\mathbb E\) denotes the expectation operator. The representation (41) is based on the Isserlis–Wick formula, see [5] (Proposition 2.2) for the proof.

Now consider the set \(Q=\{\xi \in \mathbb R^2 \,:\, 1+\xi _A>0,\,1+\xi _B>0\}\,\) and define a modified partition function

$$\begin{aligned} Z_N^* =\, \mathbb E\left[ (1+\xi _A)^{N_A}(1+\xi _B)^{N_B}\,\mathbb {1}_Q(\xi ) \right] . \end{aligned}$$
(42)

\(Z_N^*\) can be rewritten as an integral over \(\xi \in Q\), with integrand function proportional to \(\exp (N\,f(\xi ) )\) and

$$\begin{aligned} f(\xi )= -\frac{1}{2}\langle W^{-1}\xi ,\xi \rangle +\alpha \log |1+\xi _A|+(1-\alpha )\log |1+\xi _B| . \end{aligned}$$

Since f approaches its global maximum on \(\mathbb R^2\) only for \(\xi _A\ge 0,\,\xi _B\ge 0\), standard Laplace type estimates implies that

$$\begin{aligned} \frac{Z_N}{Z_N^*} \rightarrow 1 \quad \text {as }N\rightarrow \infty . \end{aligned}$$
(43)

Hence we can restrict our attention to the sequence \(\log Z_N^*\), \(N\in \mathbb N\). We claim that

Proposition 1

For every \(N_1,N_2,N\in \mathbb N\) such that \(N=N_1+N_2\), it holds that

$$\begin{aligned} Z_{N_1}^*\,Z_{N_2}^* \,\le \, Z_N^* . \end{aligned}$$
(44)

Then the sequence \(\log Z_N^*\) is super-additive and the “monotonic” convergence of the pressure density will follow immediately by Fekete’s lemma and Eq. ():

Corollary 1

Under the hypothesis (40), there exists

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\log Z_N \,=\, \sup _{N} \frac{1}{N}\log Z_N^* \end{aligned}$$
(45)

Only the proposition 1 remains to be proven.

Proof of the Proposition 1

The strategy for the proof follows the basic ideas introduced in [15] for mean field spin models. For a fixed N consider two integers \(N_1,N_2\), such that \(N=N_1+N_2\) and set

$$\begin{aligned} \gamma =N_1/N\,,\ 1-\gamma =N_2/N , \end{aligned}$$

We decompose each of the two parts of the system \(N_1,N_2\) in two populations AB according to the fixed ratio \(\alpha \), namely according to the relation

$$\begin{aligned} N_i = \alpha N_i + (1-\alpha ) N_i =: N_{iA}+N_{iB} \,,\quad i=1,2 \end{aligned}$$

Now we introduce two independent centred Gaussian vectors:

$$\begin{aligned} \xi _i = (\xi _{iA}\,,\,\xi _{iB})\,\ \text {with covariance matrix }\frac{1}{N_i}\,W \,,i=1,2 \end{aligned}$$

and we prove the following lemmas.

Lemma 1

$$\begin{aligned} \gamma \,\xi _1+(1-\gamma )\,\xi _2 \,\overset{d}{=}\, \xi \end{aligned}$$

Proof

Since \(\xi _1,\xi _2\) are independent centred Gaussian vectors, \(\xi ':=\gamma \,\xi _1+(1-\gamma )\,\xi _2\) is a centred Gaussian vector. Its covariance matrix is:

$$\begin{aligned} \gamma ^2\,\frac{W}{N_1}+(1-\gamma )^2\,\frac{W}{N_2} \,=\, \gamma \,\frac{W}{N}+(1-\gamma )\,\frac{W}{N} \,=\, \frac{W}{N} \ , \end{aligned}$$

the same of \(\xi \). \(\square \)

Lemma 2

$$\begin{aligned} (1+x)^\gamma \,(1+y)^{1-\gamma } \le 1+\gamma x+(1-\gamma )y \quad \forall \,x>-1,\,y>-1,\gamma \in (0,1) \end{aligned}$$

Proof

Consider the function \(f(x,y)=(1+x)^\gamma \,(1+y)^{1-\gamma }\) and its Taylor polynomial of first order at (0, 0), \(P(x,y)=1+\gamma x+(1-\gamma )y\,\). The Hessian matrix of f is negative defined for \(x>-1,\,y>-1\) (it has zero determinant and negative trace), hence \(f(x,y)\le P(x,y)\,\). \(\square \) Finally the proof of proposition 1 follows easily using the independence of \(\xi _1,\,\xi _2\), Lemmas 2 and 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberici, D., Mingione, E. Two Populations Mean-Field Monomer–Dimer Model. J Stat Phys 171, 96–105 (2018). https://doi.org/10.1007/s10955-018-1989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1989-x

Keywords

Navigation