Skip to main content
Log in

How Much Delocalisation is Needed for an Enhanced Area Law of the Entanglement Entropy?

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 04 July 2020

This article has been updated

Abstract

We consider the random dimer model in one space dimension with Bernoulli disorder. For sufficiently small disorder, we show that the entanglement entropy exhibits at least a logarithmically enhanced area law if the Fermi energy coincides with a critical energy of the model where the localisation length diverges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 04 July 2020

    We correct an error in the Appendix of [1].

References

  1. Abdul-Rahman, H.: Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems. J. Math. Phys. 59, 031904–1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Localization properties of the disordered XY spin chain: a review of mathematical results with an eye toward many-body localization. Ann. Phys. 529, 1600280–1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Abdul-Rahman, H., Stolz, G.: A uniform area law for the entanglement of eigenstates in the disordered XY chain. J. Math. Phys. 56, 121901–1–25 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Aizenman, M., Warzel, S.: Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  5. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Beaud, V., Sieber, J., Warzel, S.: Bounds on the bipartite entanglement entropy for oscillator systems with or without disorder, e-print arXiv:1812.09144

  7. Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J. Math. Phys. 59, 012109–1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bekenstein, J.D.: Black holes and information theory. Contemp. Phys. 45, 31–43 (2004)

    ADS  Google Scholar 

  10. Brandão, F.G.S.L., Horodecki, M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333, 761–798 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Calabrese, P., Cardy, J.: Entanglement entropy and conformal field theory. J. Phys. A 42, 504005–1–36 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  14. Damanik, D., Tcheremchantsev, S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513–534 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  15. De Bievre, S., Germinet, F.: Dynamical localization for the random dimer model. J. Stat. Phys. 98, 1135–1148 (2000)

    ADS  MATH  Google Scholar 

  16. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Elgart, A., Pastur, L., Shcherbina, M.: Large block properties of the entanglement entropy of free disordered Fermions. J. Stat. Phys. 166, 1092–1127 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Fischbacher, C., Stolz, G.: Droplet states in quantum XXZ spin systems on general graphs. J. Math. Phys. 59, 051901–1–28 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024–1–14 (2007)

    MATH  Google Scholar 

  20. Helling, R., Leschke, H., Spitzer, W.: A special case of a conjecture by Widom with implications to fermionic entanglement entropy. Int. Mat. Res. Not. 2011, 1451–1482 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Iglói, F., Szatmári, Z., Lin, Y.-C.: Entanglement entropy dynamics of disordered quantum spin chains. Phys. Rev. B 85, 094417–1–8 (2012)

    Google Scholar 

  23. Jin, B.-Q., Korepin, V.E.: Quantum spin chain, Toeplitz determinants and the Fisher–Hartwig conjecture. J. Stat. Phys. 116, 79–95 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Jitomirskaya, S., Schulz-Baldes, H., Stolz, G.: Delocalization in random polymer models. Commun. Math. Phys. 233, 27–48 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Kirsch, W.: An invitation to random Schrödinger operators. In: Random Schrödinger operators, Panor. Synthèses, vol. 25, Soc. Math. France, Paris, 2008, pp. 1–119, with an appendix by Frédéric Klopp

  26. Kirsch, W., Lenoble, O., Pastur, L.: On the Mott formula for the ac conductivity and binary correlators in the strong localization regime of disordered systems. J. Phys. A 36, 12157–12180 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Klich, I.: Lower entropy bounds and particle number fluctuations in a Fermi sea. J. Phys. A 39, L85–L91 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Laflorencie, N.: Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016)

    ADS  MathSciNet  Google Scholar 

  29. Leschke, H., Sobolev, A.V., Spitzer, W.: Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof. Phys. Rev. Lett. 112, 160403–1–5 (2014)

    Google Scholar 

  30. Leschke, H., Sobolev, A.V., Spitzer, W.: Trace formulas for Wiener–Hopf operators with applications to entropies of free fermionic equilibrium states. J. Funct. Anal. 273, 1049–1094 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)

    Google Scholar 

  32. Mott, N.F.: Conduction in non-crystalline systems. I. Localized electronic states in disordered systems. Philos. Mag. 17, 1259–1268 (1968)

    ADS  Google Scholar 

  33. Mott, N.F.: Conduction in non-crystalline systems. IV. Anderson localization in a disordered lattice. Philos. Mag. 22, 7–29 (1970)

    ADS  Google Scholar 

  34. Movassagh, R., Shor, P.W.: Supercritical entanglement in local systems: counterexample to the area law for quantum matter. Proc. Natl. Acad. Sci. USA 113, 13278–13282 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Nachtergaele, B., Sims, R., Stolz, G.: An area law for the bipartite entanglement of disordered oscillator systems. J. Math. Phys. 54, 042110–1–24 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators, Grundlehren der Mathematischen Wissenschaften, vol. 297. Springer, Berlin (1992)

    MATH  Google Scholar 

  37. Pastur, L., Slavin, V.: Area law scaling for the entropy of disordered quasifree fermions. Phys. Rev. Lett. 113, 150404–1–5 (2014)

    Google Scholar 

  38. Pastur, L., Slavin, V.: The absence of the selfaveraging property of the entanglement entropy of disordered free fermions in one dimension. J. Stat. Phys. 170, 207–220 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Peschel, I.: Calculation of reduced density matrices from correlation functions. J. Phys. A 36, L205–L208 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Pfirsch, B., Sobolev, A.V.: Formulas of Szegő type for the periodic Schrödinger operator. Commun. Math. Phys. 358, 675–704 (2018)

    ADS  MATH  Google Scholar 

  41. Pouranvari, M., Yang, K.: Maximally entangled mode, metal-insulator transition, and violation of entanglement area law in noninteracting fermion ground states. Phys. Rev. B 89, 115104–1–5 (2014)

    Google Scholar 

  42. Refael, G., Moore, J.E.: Criticality and entanglement in random quantum systems. J. Phys. A 42, 504010–1–31 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert space, Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  44. Simon, B.: Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Am. Math. Soc. 124, 3361–3369 (1996)

    MATH  Google Scholar 

  45. Sobolev, A.V.: Pseudo-Differential Operators with Discontinuous Symbols: Widom’s Conjecture. Memoirs of the American Mathematical Society, vol. 222, no. 1043 (2013)

  46. Sobolev, A.V.: Wiener–Hopf operators in higher dimensions: the Widom conjecture for piece-wise smooth domains. Integr. Equ. Oper. Theory 81, 435–449 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Stolz, G.: Aspects of the mathematical theory of disordered quantum spin chains, e-print arXiv:1606.01579

  48. Wolf, M.M.: Violation of the entropic area law for fermions. Phys. Rev. Lett. 96, 010404–1–4 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller.

Additional information

Communicated by L. Erdos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. On the proof of Theorem 3.4

Appendix A. On the proof of Theorem 3.4

Theorem 3.4 contains slight improvements of results from [JSBS03], which are necessary to deduce our main result. For us it is vital to control the quantity C in Theorem 3.4 in the limit \(v\searrow 0\) which is not done in [JSBS03]. Therefore we repeat some arguments of [JSBS03] in this appendix and keep track of the constants. Again, we assume \(v \in \;]0,2[\) and we restrict ourselves to the case \(E_{F}=0\), the case of the other critical energy \(E_{F}=v\) being analogous.

Given \(V \in \{0,1\}\) and \(E\in {\mathbb {R}}\), we define the single-step transfer matrix by

$$\begin{aligned} W_V(E):=\left( \begin{array}{@{}cc@{}} vV-E &{} -1 \\ 1&{}0 \end{array}\right) \in {\mathbb {R}}^{2\times 2}. \end{aligned}$$
(A.1)

The (multi-step) transfer matrix

$$\begin{aligned} W^\omega (E;y,x) := \left\{ \begin{array}{@{}cl@{}} W_{V^\omega (y-1)}(E)\cdots W_{V^\omega (x)}(E) &{}\quad \text {if }x<y, \\ 1_{2\times 2} &{}\quad \text {if }x=y, \end{array}\right. \end{aligned}$$
(A.2)

relates the solution of the discrete Schrödinger equation (3.7) at different sites

$$\begin{aligned} W_{V^{\omega }(x)}(E;y,x)\left( \begin{array}{@{}c@{}} \phi ^\omega _E(x) \\ \phi ^\omega _E(x-1) \end{array}\right) =\left( \begin{array}{@{}c@{}} \phi ^\omega _E(y)\\ \phi ^\omega _E(y-1) \end{array}\right) , \end{aligned}$$
(A.3)

where \(x \leqslant y\). In our model, the single-dimer transfer matrix

$$\begin{aligned} D_{V}(E):=\big (W_{V}(E)\big )^2 \end{aligned}$$
(A.4)

and its similarity transform

$$\begin{aligned} T_{V}(E):= M^{-1}_vD_{V}(E)M_v =: \left( \begin{array}{@{}cc@{}} \overline{a_V(E)} &{} b_V(E) \\ \overline{b_V(E)} &{} a_V(E) \end{array}\right) \end{aligned}$$
(A.5)

with entries \(a_{V}(E), b_{V}(E) \in {\mathbb {C}}\) are of great relevance. Here, the change of basis in \({\mathbb {C}}^{2}\) induced by

$$\begin{aligned} M_v:=m_{v}\left( \begin{array}{@{}cc@{}} \frac{1}{2}\left( v - \mathrm{i}\sqrt{4-v^2}\right) &{}\frac{1}{2}\left( v + \mathrm{i} \sqrt{4-v^2}\right) \\ 1&{}1 \end{array}\right) \end{aligned}$$
(A.6)

simultaneously diagonalises \(D_{0}(0)\) and \(D_{v}(0)\), i.e. \(T_{0}(0)=-1_{2\times 2}\) and \(T_{v}(0)\) are both diagonal. The real parameter \(m_{v}>0\) is chosen such that \(|\det M_{v}| =1\). We remark that for every \(w\in {\mathbb {R}}^{2}\) there exists \(z\in {\mathbb {C}}\) such that

$$\begin{aligned} M_{v}^{-1} w = \left( \begin{array}{@{}c@{}} z \\ {\overline{z}} \end{array}\right) . \end{aligned}$$
(A.7)

In analogy to (A.2), we define the modified (multi-step) dimer transfer matrix as

$$\begin{aligned} T^\omega (E;y,x) := \left\{ \begin{array}{c@{\quad }l} T_{V^{\omega }(y-2)}(E)\cdots T_{V^{\omega }(x)}(E) &{}\text {if }x<y, \\ 1_{2\times 2} &{} \text {if }x=y, \end{array}\right. \end{aligned}$$
(A.8)

where \(x,y\in 2{\mathbb {Z}}\).

For later usage we state the Taylor expansions of the entries of \(T_{V}(E)\) as \(E\searrow 0\)

$$\begin{aligned} \begin{aligned} a_0(E)&=-1 - E \;\frac{2\mathrm{i}}{\sqrt{4-v^2}}+{\mathcal {O}}(E^2),\\ a_1(E)&=-1+\frac{v^2}{2} + \mathrm{i} \;\frac{v}{2} \;\sqrt{4-v^2} - E \;\Big (v+\mathrm{i}\;\frac{2-v^2}{\sqrt{4-v^2}}\Big ) +{\mathcal {O}}(E^2),\\ b_0(E)&=\frac{Ev}{2}\Big (-1 +\mathrm{i}\;\frac{v}{\sqrt{4-v^2}}\Big )+{\mathcal {O}}(E^2),\\ b_1(E)&=-b_0(E)+{\mathcal {O}}(E^2).\end{aligned} \end{aligned}$$
(A.9)

Lemma A.1

(Cf. (42) in [JSBS03]). Given \(\theta \in [0,2\pi [\) , let \(e_\theta :=\frac{1}{\sqrt{2}}({{\,\mathrm{e}\,}}^{-\mathrm{i}\theta },{{\,\mathrm{e}\,}}^{\mathrm{i}\theta })^T\). For all \(v\in \;]0,2[\) , \(V\in \{0,1\}\) and all \(E\in {\mathbb {R}}\) there exists maps \(\Theta _V:\;[0,2\pi [\; \rightarrow {\mathbb {R}}\) and \(\rho _V:\;[0,2\pi [\;\rightarrow \;]0,\infty [\,\) such that

$$\begin{aligned} T_{V}(E) e_\theta = \rho _V(\theta ) \, e_{\Theta _V(\theta )} \end{aligned}$$
(A.10)

for all \(\theta \in [0,2\pi [\) . Furthermore, we have

$$\begin{aligned} \rho ^2_V(\theta )=1+2|b_V(E)|^2+2\mathrm{Re}\big (a_V(E)b_V(E){{\,\mathrm{e}\,}}^{2\mathrm{i}\theta }\big ). \end{aligned}$$
(A.11)

Proof

The form of \(T_{V}(E)\) in (A.5) implies that for every non-zero \(w_z:=(z,{{\overline{z}}})^T\), \(z\in {\mathbb {C}}\backslash \{0\}\) there exists \(\zeta \in {\mathbb {C}}\backslash \{0\}\) such that \(T_{V}(E) w_{z} = w_{\zeta }\). Since \(w_{\zeta }= \rho e_\Theta \) for a unique \(\rho >0\) and \(\Theta \in [0,2\pi [\,\), the first part of the lemma follows. The equality (A.11) is verified by a direct computation. \(\quad \square \)

In the following lemma, which is a modification of (49) in [JSBS03], we use the notation \(|\pmb \cdot |\) for the Euclidean norm on \({\mathbb {C}}^{2}\).

Lemma A.2

Let \(v\in \;]0,2[\,\), \(L\in {\mathbb {N}}\), \(E\in [-2,2]\), \(\omega \in \Omega \) and \(x,y\in \Gamma _{L}\) with \(x\leqslant y\).

  1. (i)

    Then there exists a constant \(c_v \in \;]0,\infty [\) , which depends only on v and obeys

    $$\begin{aligned} \lim _{v\searrow 0}c_v=0, \end{aligned}$$
    (A.12)

    such that for all unit vectors \(w\in {\mathbb {R}}^2\), \(|w|=1\), there is an angle \(\xi _w\in [0,2\pi [\) such that

    $$\begin{aligned} \ln \big (|W^\omega (E;x,-L)w|^{2}\big ) \in 2E \sum _{k=k_0}^{k_1-1} \mathrm{Re}\big ( d_{V^\omega (2k)}{{\,\mathrm{e}\,}}^{2\mathrm{i}\vartheta _k}\big ) +{\mathcal {O}}(E^2L) + c_{v} [-1,1] \end{aligned}$$
    (A.13)

    with \(d_V:= {a_{V}}(0) b_{V}'(0)\) for \(V\in \{0,1\}\) and where

    $$\begin{aligned} k_0:=\min \{k\in {\mathbb {Z}}:-L\leqslant 2k\}, \qquad k_1:=\max \{k:2k\leqslant x\}, \end{aligned}$$
    (A.14)

    \(\vartheta _{k_0}:=\xi _w\) and \(\vartheta _{k+1}=\Theta _{V^\omega (2k)}(\vartheta _k)\) for all \(k\in \{k_0,\ldots ,k_1-1\}\). The \({\mathcal {O}}(E^2L)\)-term in (A.13) has no further dependencies except on the model parameters.

  2. (ii)

    Let \(\{w_1,w_2\}\) be an orthonormal basis of \({\mathbb {R}}^2\). Then

    $$\begin{aligned} \Vert W^\omega (E;y,x)\Vert \leqslant 2\max _{w\in \{w_1,w_2\}}\max _{z\in \Gamma _L}|W^\omega (E;z,-L)w|^2. \end{aligned}$$
    (A.15)

Proof

  1. (i)

    For all \(x\in \Gamma _L\) we have

    $$\begin{aligned} W^\omega (E;x,-L)=W^\omega (E;x,2k_1)M_v T^\omega (E;2k_1,2k_0)M_v^{-1} W^\omega (E;2k_0,-L). \end{aligned}$$
    (A.16)

    For \(w\in {\mathbb {R}}^2\), \(|w|=1\), let the angle \(\xi _w\in [0,2\pi [\) be given as the unique solution of

    $$\begin{aligned} e_{\xi _w}=M_v^{-1} W^\omega (E;2k_0,-L)w/|M_v^{-1} W^\omega (E;2k_0,-L)w|. \end{aligned}$$
    (A.17)

    We claim that

    $$\begin{aligned} \ln |W^\omega (E;x,-L)w|^2 \in \sum _{k=k_0}^{k_1-1}\ln \big (\rho _{V^\omega (2k)}(\vartheta _k)^{2}\big ) + c_v [-1,1] \end{aligned}$$
    (A.18)

    with

    $$\begin{aligned} c_v:= 4\ln \big (\Vert M_v\Vert \big ) + 4 \max _{E\in [-2,2]}\max _{V\in \{0,1\}}\ln \Vert W_{V}(E)\Vert >0. \end{aligned}$$
    (A.19)

    To see the validity of (A.18), we iterate Lemma A.1 and conclude

    $$\begin{aligned} |W^\omega (E;x,-L)w|&= |W^\omega (E;x,2k_{1}) M_{v}e_{\vartheta _{k_{1}}}| \prod _{k=k_0}^{k_1-1} \rho _{V^\omega (2k)}(\vartheta _k) \nonumber \\&\qquad \times |M_v^{-1} W^\omega (E;2k_0,-L)w|. \end{aligned}$$
    (A.20)

    Furthermore, we note that

    $$\begin{aligned} \Vert A^{-1}\Vert = \Vert A\Vert \qquad \text {and} \qquad \frac{1}{\Vert A\Vert } \leqslant |Aw| \leqslant \Vert A\Vert \end{aligned}$$
    (A.21)

    hold for any complex \(2\times 2\)-matrix A with \(|\det A| =1\) and any \(w\in {\mathbb {C}}^{2}\) with \(|w|=1\). Applying this to the first and last factor on the right-hand side of (A.20), yields (A.18).

    The estimate (A.13) now follows from (A.11) and a Taylor expansion in the energy E, using (A.9). Since \(\Vert W_V(E)\Vert ,\, \Vert M_v\Vert \rightarrow 1\) as \(v\rightarrow 0\) for every \(E\in [-2,2]\) and \(V\in \{0,1\}\), we conclude (A.12) from (A.19).

  1. (ii)

    For all \(x,\;y\in \Gamma _L\) we have

    $$\begin{aligned} \Vert W^\omega (E;y,x)\Vert \leqslant \Vert W^\omega (E;y,-L)\Vert \Vert W^\omega (E;x,-L)^{-1}\Vert \leqslant \max _{z\in \Gamma _L}\Vert W^\omega (E;z,-L)\Vert ^2, \end{aligned}$$
    (A.22)

    where we used the equality of norms in (A.21). The claim follows from the observation that for any \(2\times 2\) matrix

    $$\begin{aligned} \Vert A\Vert ^2\leqslant 2\max _{w\in \{w_1,w_2\}}\Vert Aw\Vert ^2. \end{aligned}$$
    (A.23)

\(\square \)

The next lemma accounts for a perturbation in energy and is a variation of [DT03, Lemma 2.1] or [Sim96, Thm. 2J].

Lemma A.3

Let \(E,\varepsilon \in {\mathbb {R}}\), \(\omega \in \Omega \), \(L\in {\mathbb {N}}\) and \(G_{E}^{\omega }:=\max _{x,y\in \Gamma _L, x<y}\Vert W^\omega (E;y,x)\Vert \). Then, we have for all \(x\in \Gamma _L\) and all \(w\in {\mathbb {R}}^2\) with \(|w|=1\) the estimate

$$\begin{aligned} |W^\omega (E+\varepsilon ;x,-L)w|^{2} \in |W^\omega (E;x,-L)w|^{2} + (G_{E}^{\omega })^{2} \big ({{\,\mathrm{e}\,}}^{4L|\varepsilon |G_{E}^{\omega }} - 1\big ) \;[-1,1] . \end{aligned}$$
(A.24)

Proof

For \(V\in \{0,1\}\) and \(E,\varepsilon \in {\mathbb {R}}\) we observe

(A.25)

and expand \(W^\omega (E+\varepsilon ;x,-L)\) in powers of \(\varepsilon \). For the upper bound, this leads to the estimate

$$\begin{aligned} |W^\omega (E+\varepsilon ;x,-L)w|&\leqslant |W^\omega (E;x,-L)w| + G_{E}^{\omega } \max _{x\in \Gamma _L}\sum _{j=1}^{x+L} \genfrac(){0.0pt}1{x+L}{j} \; (|\varepsilon | G_{E}^{\omega })^j \nonumber \\&\leqslant |W^\omega (E;x,-L)w| + G_{E}^{\omega } \sum _{j=1}^{|\Gamma _L|} \frac{\big (|\Gamma _L||\varepsilon | G_{E}^{\omega }\big )^j}{j!}\nonumber \\&\leqslant |W^\omega (E;x,-L)w| + G_{E}^{\omega } \big ({{\,\mathrm{e}\,}}^{2L|\varepsilon |G_{E}^{\omega }} - 1\big ) \end{aligned}$$
(A.26)

for all \(x\in \Gamma _L\) and all unit vectors \(w\in {\mathbb {R}}^{2}\). For the lower bound, we use the inverse triangle inequality to estimate the expansion in \(\varepsilon \) according to

$$\begin{aligned} |W^\omega (E+\varepsilon ;x,-L)w|&\geqslant |W^\omega (E;x,-L)w| - G_{E}^{\omega } \max _{x\in \Gamma _L}\sum _{j=1}^{x+L} \genfrac(){0.0pt}1{x+L}{j}\;(|\varepsilon | G_{E}^{\omega })^j \nonumber \\&\geqslant |W^\omega (E;x,-L)w| - G_{E}^{\omega } \big ({{\,\mathrm{e}\,}}^{2L|\varepsilon |G_{E}^{\omega }} - 1\big ) \end{aligned}$$
(A.27)

for all \(x\in \Gamma _L\) and all unit vectors \(w\in {\mathbb {R}}^{2}\). We note that for any \(a,b,c \geqslant 0\), the two-sided estimate \(a \in b+ c \, [-1,1]\) implies \(a^{2} \in b^{2}+ c(2b+c) \, [-1,1]\). In our case, we have \(b:=|W^\omega (E;x,-L)w| \leqslant G_{E}^{\omega }\), which implies the claim. \(\quad \square \)

For convenience we quote [JSBS03, Thm. 6] in our notation and note that the assumption \(|\langle {{\,\mathrm{e}\,}}^{2\mathrm{i} \eta _{\pm }}\rangle | < 1\) there is always fulfilled in the dimer model considered in this paper.

Theorem A.4

([JSBS03, Thm. 6]). For \(L\in {\mathbb {N}}\), \(\alpha >0\), \(\theta \in [0,2\pi [\) and \(E\in {\mathcal {W}}_{L}\) let

$$\begin{aligned} \Omega _L(\alpha ,E,\theta ):=\Big \{\omega \in \Omega :\;\exists \, k_1\in \tfrac{1}{2}\Gamma _L \cap {\mathbb {Z}}\text { such that } \Big |\sum _{k=k_0}^{k_1}d_{V^\omega (2k)}{{\,\mathrm{e}\,}}^{2\mathrm{i}\vartheta _k}\Big |\geqslant L^{\alpha +\frac{1}{2}}\Big \}, \end{aligned}$$
(A.28)

with \(d_{V}\), \(k_0\) and \(\vartheta _k\) defined as in Lemma A.2(i) with \(\vartheta _{k_0}=\theta \). Then there exists quantities \(C_1,\;C_2>0\), depending only on \(\alpha \) and the model parameters, such that

$$\begin{aligned} {\mathbb {P}}\big (\Omega _L(\alpha ,E,\theta )\big )\leqslant C_1 {{\,\mathrm{e}\,}}^{-C_2L^\alpha }. \end{aligned}$$
(A.29)

Lemma A.5

Let \(v\in \;]0,2[\,\). For all \(\alpha >0\) there exists \(L_0\in {\mathbb {N}}\) such that for all \(L\geqslant L_0\) there exists a measurable subset \(\Omega _L(\alpha )\subseteq \Omega \) and a constant \(c>0\) such that

$$\begin{aligned} {\mathbb {P}}\big (\Omega _L(\alpha )\big )\leqslant {{\,\mathrm{e}\,}}^{-cL^{\alpha /2}} \end{aligned}$$
(A.30)

and such that for all \(\omega \in \big (\Omega _L(\alpha )\big )^c\), \({E \in {\mathcal {W}}_{L}}\) and \({x\in \Gamma _L}\)

$$\begin{aligned} \Big |W^\omega (E;x,-L) \Big (\begin{array}{@{}c@{}} 1 \\ 0 \end{array} \Big ) \Big |^2 \in [ {{\,\mathrm{e}\,}}^{-3c_v}, {{\,\mathrm{e}\,}}^{3c_v}], \end{aligned}$$
(A.31)

where the constant \(c_{v}\) is given by Lemma A.2(i), see (A.19).

Proof

Let \(w_1:=(1,0)^{T}\) and \(w_2:=(0,1)^{T}\). In view of (A.17), we define a set of modified Prüfer angles

$$\begin{aligned} \Xi {:=}\Big \{\xi {\in }[0,2\pi [\,:\;\exists W\in \{1_{2\times 2}, W_{0}(E), W_{1}(E)\} ,w{\in }\{w_1,w_2\}\text { with } e_{\xi } =\frac{M_v^{-1} Ww}{|M_v^{-1} Ww|}\Big \} \end{aligned}$$
(A.32)

with cardinality \(|\Xi | \leqslant 6\). Let

$$\begin{aligned} \Omega _L(\alpha ,E):=\bigcup _{\theta \in \Xi }\Omega _L(\alpha /2,E,\theta ). \end{aligned}$$
(A.33)

Hence, \({\mathbb {P}}(\Omega _L(\alpha ,E))\leqslant 6C_1{{\,\mathrm{e}\,}}^{-C_2L^{\alpha /2}}\) by Theorem A.4, and for all \(E\in {\mathcal {W}}_{L}\) and \(\omega \in (\Omega _L(\alpha ,E))^c\) the estimate (A.13) yields

$$\begin{aligned} \ln \big (|W^\omega (E;x,-L)w|^{2}\big ) \in {\mathcal {O}}(E^2L) + \big (2E L^{1/2+\alpha /2} + c_{v}\big ) \; [-1,1] \end{aligned}$$
(A.34)

for all \(x\in \Gamma _{L}\) and \(w\in \{ w_{1}, w_{2}\}\). Hence there exists \(L_0^\prime >0\) such that for all \(L\geqslant L_0^\prime \), all \(E\in {\mathcal {W}}_{L}\), all \(\omega \in (\Omega _L(\alpha ,E))^c\), all \(x\in \Gamma _{L}\) and \(w\in \{w_{1},w_{2}\}\), we have

$$\begin{aligned} \ln \big (|W^\omega (E;x,-L)w|^2\big ) \in 2c_v \, [-1,1]. \end{aligned}$$
(A.35)

The upper bound in (A.35) and Lemma A.2(ii) imply for the quantity \(G_{E}^{\omega }\) in Lemma A.3

$$\begin{aligned} G_{E}^{\omega }=\max _{x,y\in \Gamma _L, x<y} \Vert W^\omega (E;y,x)\Vert \leqslant 2 {{\,\mathrm{e}\,}}^{2c_v} \end{aligned}$$
(A.36)

for all \(\omega \in (\Omega _L(\alpha ,E))^c\). We define

$$\begin{aligned} \Omega _L(\alpha ):=\bigcup _{\begin{array}{c} n \in {\mathbb {Z}}: \\ n/L^{2} \in {\mathcal {W}}_{L} \end{array}}\Omega _L(\alpha ,n/L^2). \end{aligned}$$
(A.37)

Hence there exists \(L_0^{\prime \prime } \geqslant L_{0}'\) and \(c>0\) such that for all \(L\geqslant L_0^{\prime \prime }\) we have

$$\begin{aligned} {\mathbb {P}}\big [\Omega _L(\alpha ) \big ] \leqslant 18L^{3/2}C_1{{\,\mathrm{e}\,}}^{-C_2L^{\alpha /2}}\leqslant {{\,\mathrm{e}\,}}^{-cL^{\alpha /2}}. \end{aligned}$$
(A.38)

Now, we consider \(\omega \in (\Omega _L(\alpha ))^c\) arbitrary and \(n\in {\mathbb {Z}}\) arbitrary such that \(E_{n} :=n/L^2 \in {\mathcal {W}}_{L}\) and apply Lemma A.3, (A.35) and (A.36) with \(E_{n}\), \(w=w_{1}\) and any \(|\varepsilon | \leqslant L^{-2}\). This gives

$$\begin{aligned} |W^\omega (E;x,-L)w_{1}|^{2}&\in |W^\omega (E_{n};x,-L)w_{1}|^{2} + 4 {{\,\mathrm{e}\,}}^{4c_{v}}\big (\exp \{4{{\,\mathrm{e}\,}}^{2c_{v}}/L\} -1 \big ) \; [-1,1] \nonumber \\&\subseteq [{{\,\mathrm{e}\,}}^{-2c_{v}},e^{2c_{v}}] + 4 {{\,\mathrm{e}\,}}^{4c_{v}}\big (\exp \{4{{\,\mathrm{e}\,}}^{2c_{v}}/L\} -1 \big ) \; [-1,1] \end{aligned}$$
(A.39)

for all \(x\in \Gamma _{L}\) and all \(E\in D_{n}:= E_{n} + L^{-2} [-1,1]\). Since

$$\begin{aligned} {\mathcal {W}}_{L} \subseteq \bigcup _{n \in {\mathbb {Z}}:\; E_{n}\in {\mathcal {W}}_{L}} D_n \end{aligned}$$
(A.40)

there exists \(L_0 \geqslant L_0^{\prime \prime }\) such that for all \(L \geqslant L_0\), all \(\omega \in (\Omega _L(\alpha ))^c\), all \(E\in {\mathcal {W}}_{L}\) and all \(x\in \Gamma _{L}\) we have

$$\begin{aligned} |W^\omega (E;x,-L)w_1|^2 \in {{\,\mathrm{e}\,}}^{3c_v} \, [-1,1]. \end{aligned}$$
(A.41)

\(\square \)

Proof of Theorem 3.4

  1. (i)

    Let us first proof (3.12). For every \(L\in {\mathbb {N}}\), \(x\in \Gamma _L\), \(E\in {\mathbb {R}}\) and \(\omega \in \Omega \), we infer from (3.7) that

    $$\begin{aligned} r_{x}^\omega (E)^2 = \phi ^\omega _E(x)^2+\phi ^\omega _E(x-1)^2 = \Big |W^\omega (E;x,-L) \Big (\begin{array}{@{}c@{}} 1 \\ 0 \end{array} \Big )\Big |^2 /(R^{\omega }_{E})^2, \end{aligned}$$
    (A.42)

    with the normalisation

    $$\begin{aligned} (R^{\omega }_{E})^2 :=\sum _{k=0}^{L-1}\Big |W^\omega (E;-L+1+2k,-L) \Big (\begin{array}{@{}c@{}} 1 \\ 0 \end{array} \Big )\Big |^2. \end{aligned}$$
    (A.43)

    Given \(\alpha >0\), Lemma A.5 provides the existence of a minimal length \(L_{0}\in {\mathbb {N}}\) such that for all \(L \geqslant L_0\), \(\omega \in (\Omega _L(\alpha ))^c\), \(x\in \Gamma _{L}\) and \(E\in {\mathcal {W}}_{L}\), the two-sided estimate

    $$\begin{aligned} (R^{\omega }_{E})^2 \in [L{{\,\mathrm{e}\,}}^{-3c_v},L{{\,\mathrm{e}\,}}^{3c_v}] \end{aligned}$$
    (A.44)

    holds. Thus, (A.44), another application of Lemma A.5 and (A.42) yield (3.12) with the constant

    $$\begin{aligned} C = {{\,\mathrm{e}\,}}^{6c_v}, \end{aligned}$$
    (A.45)

    and (A.12) implies (3.9). To prove the level-spacing estimate (3.11), let \(L_{0}\) be as above, \(L \geqslant L_0\), \(\omega \in (\Omega _L(\alpha ))^c\) and let \(E,E'\in {\mathcal {W}}_{L}\) be two adjacent eigenvalues of \(H_L^\omega \) with \(E<E'\). For \(E^{(\prime )}\) to be an eigenvalue, Dirichlet boundary conditions \(\phi ^{\omega }_{E^{(\prime )}}(L)=0\) have to be met on the right-hand side of \(\Gamma _{L}\), that is, \(\theta ^\omega _{L}(E^{(\prime )})\in \pi /2+\pi {\mathbb {Z}}\). Since \(\theta ^\omega _{L}\) is a continuous, increasing function with respect to the energy, E and \(E'\) are adjacent eigenvalues if and only if the Prüfer-angle difference satisfies \(\theta _{L}^\omega (E^\prime )-\theta _{L}^\omega (E) =\pi \). Using (3.19), this can be rewritten as

    $$\begin{aligned} \pi = \int _E^{E^\prime }{\mathrm {d}}\varepsilon \, \frac{\mathrm {d}}{\mathrm {d}\varepsilon } \theta ^\omega _{L}(\varepsilon ) = \int _E^{E^\prime }{\mathrm {d}}\varepsilon \sum _{x=-L}^{L-1} \left( \frac{\phi _\varepsilon ^\omega (x)}{r_L^\omega (\varepsilon )} \right) ^{2} = \int _E^{E^\prime }{\mathrm {d}}\varepsilon \; \frac{1}{\big (r_L^\omega (\varepsilon )\big )^{2}}.\nonumber \\ \end{aligned}$$
    (A.46)

    The eigenfunction estimate (3.12) does not apply directly to \(r_L^\omega (\varepsilon )\) for \(\varepsilon \in {\mathcal {W}}_{L}\), but only after an additional iteration with the transfer matrix

    $$\begin{aligned} \big (r_L^\omega (\varepsilon )\big )^{2} = \Big | W_{V^{\omega }(L-1)}(\varepsilon ) \Big (\begin{array}{@{}c@{}} \cos \theta ^{\omega }_{L-1}(\varepsilon ) \\ \sin \theta ^{\omega }_{L-1}(\varepsilon ) \end{array} \Big )\Big |^{2} \big (r_{L-1}^\omega (\varepsilon )\big )^{2}. \end{aligned}$$
    (A.47)

    We already have \(\big (r_{L-1}^\omega (\varepsilon )\big )^{2} \in L^{-1} [C^{-1},C]\) for every \(\omega \in (\Omega _L(\alpha ))^c\) by (3.12). Since \( \max _{V\in \{0,1\}} \Vert W_{V}(\varepsilon )\Vert \leqslant {{\,\mathrm{e}\,}}^{c_{v}/4} \leqslant C\) uniformly in \(\varepsilon \in {\mathcal {W}}_{L}\) by (A.19), we deduce from (A.21) that \(\big (r_L^\omega (\varepsilon )\big )^{2} \in L^{-1} [C^{-3},C^{3}]\). Inserting this into (A.46), yields

    $$\begin{aligned} E^\prime -E\in \frac{\pi }{L} \; [C^{-3},C^{3}]. \end{aligned}$$
    (A.48)
  2. (ii)

    The existence of the density of states \({\mathcal {N}}'(E_{c})\) follows from [JSBS03, Thm. 3], the upper and lower bounds from Dirichlet–Neumann bracketing and the eigenvalue spacing in the critical energy window, as we show now. For \(L\in {\mathbb {N}}\) we introduce the restricted Schrödinger operators \(H^{\omega ,\,D/N}_L\) with Dirichlet, respectively Neumann, boundary conditions

    (A.49)

    Their integrated densities of states at energy \(E\in {\mathbb {R}}\) are given by

    $$\begin{aligned} {\mathcal {N}}_L^{\omega ,\, D/N}(E):={{\,\mathrm{tr}\,}}\Big \{1_{\leqslant E}\big (H^{\omega ,\,D/N}_L\big )\Big \}. \end{aligned}$$
    (A.50)

    Since \(H^{\omega ,\,D/N}_L\) are rank-2-perturbations of \(H^\omega _L\), the min-max-principle implies

    $$\begin{aligned} {\mathcal {N}}_L^{\omega ,\, D/N}(E)\in {{\,\mathrm{tr}\,}}\big \{1_{\leqslant E}(H^\omega _L)\big \} + [-2,2]. \end{aligned}$$
    (A.51)

    According to [CL90, p. 312] Dirichlet–Neumann bracketing yields

    $$\begin{aligned} \frac{1}{|\Gamma _L|}{\mathbb {E}}\big [{\mathcal {N}}_L^{D}(E)\big ] \leqslant {\mathcal {N}}(E)\leqslant \frac{1}{|\Gamma _L|}{\mathbb {E}}\big [{\mathcal {N}}_L^{N}(E)\big ] \end{aligned}$$
    (A.52)

    for every \(E\in {\mathbb {R}}\) and every \(L\in {\mathbb {N}}\). Thus, we conclude from (A.51) and (A.52) that

    $$\begin{aligned} {\mathcal {N}}(E+\varepsilon )-{\mathcal {N}}(E-\varepsilon ) \in \frac{1}{|\Gamma _L|} {\mathbb {E}}\big \{ {{\,\mathrm{tr}\,}}1_{]E-\varepsilon ,E+\varepsilon ]}(H_L)\big \} + \frac{4}{|\Gamma _L|} \; [-1,1] \end{aligned}$$
    (A.53)

    for every \(\varepsilon >0\). For fixed \(\alpha \in \;]0,1/2[\) let \(\varepsilon _L:=L^{-1/2-\alpha }\) be half the width of the critical energy window \({\mathcal {W}}_{L}\) around \(E_{c} \in \{0,v\}\). Theorem 3.4(i) provides the existence of a minimal length \(L_{0}\in {\mathbb {N}}\) such that for all \(L\geqslant L_0\) and all \(\omega \in (\Omega _L(\alpha ))^c\) and we have

    $$\begin{aligned} \frac{2\varepsilon L}{\pi C^3} - 1 \leqslant {{\,\mathrm{tr}\,}}\big \{1_{]E_{c}-\varepsilon ,E_{c}+\varepsilon ]}(H^\omega _L)\big \} \leqslant \frac{2\varepsilon C^3 L}{\pi } + 1. \end{aligned}$$
    (A.54)

    The estimates (A.54) and (A.53) imply for \(L\geqslant L_{0}\)

    $$\begin{aligned} \frac{{\mathcal {N}}(E_{c} + \varepsilon _L) - {\mathcal {N}}(E_{c} - \varepsilon _L)}{2\varepsilon _L}&\in \frac{1}{ 2\varepsilon _L |\Gamma _L|} \; {\mathbb {E}} \big \{ 1_{\Omega _{L}(\alpha )} {{\,\mathrm{tr}\,}}1_{]E_{c}-\varepsilon _{L},E_{c}+\varepsilon _{L}]}(H_L)\big \} \nonumber \\&\quad + \frac{{\mathbb {P}}\big \{\big (\Omega _{L}(\alpha )\big )^{c}\big \}}{2\varepsilon _L |\Gamma _L|} \; \Big [\frac{2\varepsilon _{L}L}{\pi C^{3}}-1, \frac{2\varepsilon _{L} C^3 L}{\pi } + 1\Big ]\nonumber \\&\quad + \frac{2}{\varepsilon _L |\Gamma _L|} \;[-1,1] \nonumber \\&\subseteq \frac{{\mathbb {P}}\big \{\big (\Omega _{L}(\alpha )\big )^{c}\big \} L}{\pi |\Gamma _L|} \; [C^{-3}, C^{3}] \nonumber \\&\quad + \Big ( \frac{{\mathbb {P}}\{\Omega _{L}(\alpha )\}}{2\varepsilon _{L}} + \frac{3}{\varepsilon _{L}|\Gamma _{L}|}\Big ) \; [-1,1]. \end{aligned}$$
    (A.55)

    Now, the claim follows in the limit \(L\rightarrow \infty \). \(\quad \square \)

We finish with an elementary auxiliary result needed in the proof of Theorem 2.1.

Lemma A.6

Let \(\gamma \in \;]0,1/2[\) and \(\gamma _L:=\lfloor (\gamma +\gamma ^2)L\rfloor -\lfloor \gamma L\rfloor \) for \(L\in {\mathbb {N}}\). Then for all \(L^\prime \in {\mathbb {N}}\) there exists \(L\in {\mathbb {N}}\) such that \(L^\prime =\gamma _L\).

Proof

As \(\gamma <1\) and \(\gamma +\gamma ^2<1\), we infer \(\lfloor (\gamma +\gamma ^2)(L+1)\rfloor -\lfloor (\gamma +\gamma ^2)L\rfloor \in \{0,1\}\) and \(\lfloor \gamma (L+1)\rfloor -\lfloor \gamma L\rfloor \in \{0,1\}\) for all \(L\in {\mathbb {N}}\). Thus, we have \(\gamma _{L+1}-\gamma _L\in \{-1,0,1\}\) for all \(L\in {\mathbb {N}}\). Together with \(\gamma _1=0\) and \(\lim _{L\rightarrow \infty }\gamma _L=\infty \), this yields the claim. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, P., Pastur, L. & Schulte, R. How Much Delocalisation is Needed for an Enhanced Area Law of the Entanglement Entropy?. Commun. Math. Phys. 376, 649–679 (2020). https://doi.org/10.1007/s00220-019-03523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03523-3

Navigation