Skip to main content
Log in

Approaching Criticality via the Zero Dissipation Limit in the Abelian Avalanche Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The discrete height abelian sandpile model was introduced by Bak, Tang, Wiesenfeld and Dhar as an example for the concept of self-organized criticality. When the model is modified to allow grains to disappear on each toppling, it is called bulk-dissipative. We provide a detailed study of a continuous height version of the abelian sandpile model, called the abelian avalanche model, which allows an arbitrarily small amount of dissipation to take place on every toppling. We prove that for non-zero dissipation, the infinite volume limit of the stationary measure of the abelian avalanche model exists and can be obtained via a weighted spanning tree measure. We show that in the whole non-zero dissipation regime, the model is not critical, i.e., spatial covariances of local observables decay exponentially. We then study the zero dissipation limit and prove that the self-organized critical model is recovered, both for the stationary measure and for the dynamics. We obtain rigorous bounds on toppling probabilities and introduce an exponent describing their scaling at criticality. We rigorously establish the mean-field value of this exponent for \(d > 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya, S.R., Járai, A.A: Infinite volume limit for the stationary distribution of Abelian sandpile models. Commun. Math. Phys. 249(1), 197–213 (2004). An erratum for this paper appeared in Commun. Math. Phys. 264(3), 843 (2006), with an electronic supplemental material

  2. Bak, P., Tang, K., Wiesefeld, K.: Self-organized criticality. Phys. Rev. A 38(1), 364–374 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dhar, D.: Self organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369(1), 27–70 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gabrielov, A.: Abelian avalanches and Tutte polynomials. Physica A 195(1–2), 253–274 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Grimmett, G.: Percolation, Grundlehren der Mathematischen Wissenschaften, vol. 321, 2nd edn. Springer, Berlin (1999)

  9. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(2), 673–709 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ivashkevich, E.V., Ktitarev, D.V., Priezzhev, V.B.: Waves of topplings in an Abelian sandpile. Physica A 209, 347–360 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ivaskevich, E.V., Priezzhev, V.B.: Introduction to the sandpile model. Physica A 254, 97–116 (1998)

    Article  ADS  Google Scholar 

  13. Járai, A.A.: Thermodynamic limit of the abelian sandpile model on \(\mathbb{Z}^d\). Markov Process. Relat. Fields 11(2), 313–336 (2005)

    MATH  Google Scholar 

  14. Járai, A.A., Lyons, R.: Ladder sandpiles. Markov Process. Relat. Fields 13(3), 493–518 (2007)

    MATH  Google Scholar 

  15. Járai, A. A.: Rate of convergence estimates for the zero-dissipation limit in Abelian sandpiles. Preprint. arXiv:1101.1437v2

  16. Járai, A.A.: Abelian sandpiles: an overview and results on certain transitive graphs. Markov Process. Relat. Fields 18(2), 111–156 (2012)

    MATH  Google Scholar 

  17. Járai, A.A., Redig, F.: Infinite volume limit of the Abelian sandpile model in dimensions \(d\ge 3\). Probab. Theory Relat. Fields 141(1–2), 181–212 (2008)

    Article  MATH  Google Scholar 

  18. Járai, A.A., Werning, N.: Minimal configurations and sandpile measures. J. Theor. Probab. 27, 1–15 (2012)

    Google Scholar 

  19. Lang, S.: Undergraduate Algebra, 3rd edn. Springer, New York (2005)

    MATH  Google Scholar 

  20. Lawler, G.F.: Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  21. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced mathematics, vol. 123. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  22. Maes, C., Redig, F., Saada, E.: The Abelian sandpile model on an infinite tree. Ann. Probab. 30(4), 2081–2107 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maes, C., Redig, F., Saada, E.: The infinite volume limit of dissipative Abelian sandpiles. Commun. Math. Phys. 244(2), 395–417 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Maes, C., Redig, F., Saada, E.: Abelian sandpile models in infinite volume. Sankhya 67(4), 634–661 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Mahieu, S., Ruelle, P.: Scaling fields in the two-dimensional abelian sandpile model. Phys. Rev. E 64, 1–19 (2001)

    Article  Google Scholar 

  26. Majumdar, S.N., Dhar, D.: Height correlations in the Abelian sandpile model. J. Phys. A 24, L357–L362 (1991)

    Article  ADS  Google Scholar 

  27. Majumdar, S.N., Dhar, D.: Equivalence between the Abelian sandpile model and the \(q \rightarrow 0\) limit of the Potts model. Physica A 185, 129–145 (1992)

    Article  ADS  Google Scholar 

  28. Priezzhev, V.B.: The upper critical dimension of the abelian sandpile model. J. Stat. Phys. 98, 667–684 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Redig, F.: Mathematical aspects of the Abelian Sandpile Model. In: Bovier, A., Dunlop, F., den Hollander, F., van Enter, A., Dalibard, J. (eds.) Les Houches, Session LXXXIII 2005, pp. 657–728. Elsevier, Amsterdam (2006)

  30. Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics, vol. 34, 2nd edn. Springer, New York (1976)

    Book  MATH  Google Scholar 

  31. Thorisson, H.: On coupling and convergence in density and in distribution. Preprint (2008)

  32. Tsuchiya, V.T., Katori, M.: Proof of breaking of self-organized criticality in a nonconservative abelian sandpile model. Phys. Rev. E (3) 61(2), 1183–1188 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth ACM Symposium on the Theory of Computing, pp. 296–303. ACM Press, New York (1996)

Download references

Acknowledgments

We thank Hermann Thorisson for indicating us reference [31]. E.S. was supported by grants ANR-07-BLAN-0230, ANR-2010-BLAN-0108. For financial support and hospitality, we thank Carleton University, Leiden University, MAP5 lab at Université Paris Descartes, Nijmegen University, Delft University and Centre Emile Borel of Institut Henri Poincaré (part of this work was done during the semester “Interacting Particle Systems, Statistical Mechanics and Probability Theory”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal A. Járai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Járai, A.A., Redig, F. & Saada, E. Approaching Criticality via the Zero Dissipation Limit in the Abelian Avalanche Model. J Stat Phys 159, 1369–1407 (2015). https://doi.org/10.1007/s10955-015-1231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1231-z

Keywords

Navigation