Skip to main content
Log in

The Infinite Volume Limit of Dissipative Abelian Sandpiles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the thermodynamic limit of the stationary measures of the Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains may disappear at each toppling). We prove uniqueness and mixing properties of this measure and we obtain an infinite volume ergodic Markov process leaving it invariant. We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’ to infinite volume in order to obtain a compact abelian group with a unique Haar measure representing the uniform distribution over the recurrent configurations that create finite avalanches

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak, P., Tang, K., Wiesenfeld, K.: Self-Organized Criticality. Phys. Rev. A 38, 364–374 (1988)

    Article  MathSciNet  Google Scholar 

  2. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 25, 1316–1333 (1994)

    MATH  Google Scholar 

  3. Daerden, F., Vanderzande, C.: Dissipative abelian sandpiles and random walks. Phys. Rev E 63, 030301: 1–4 (2001)

    Article  Google Scholar 

  4. Dhar, D.: Self Organised Critical State of Sandpile Automaton Models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    Article  MATH  Google Scholar 

  5. Dhar, D.: The Abelian Sandpiles and Related Models. Physica A 263, 4–25 (1999)

    Article  Google Scholar 

  6. Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases, Phase Transitions and Critical Phenomena, Vol. 18, C. Domb and J.L. Lebowitz, (eds.), London: Academic Press, 2001, pp. 1–142

  7. Heyer, H.: Probability measures on locally compact groups. Berlin-Heidelberg-New York: Springer, 1977

  8. Ivashkevich, E.V., Priezzhev, V.B.: Introduction to the sandpile model. Physica A 254, 97–116 (1998)

    Article  Google Scholar 

  9. Maes, C., Redig, F., Saada E., Van Moffaert, A.: On the thermodynamic limit for a one-dimensional sandpile process. Markov Proc. Rel. Fields 6, 1–22 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Maes, C., Redig, F., Saada E.: The abelian sandpile model on an infinite tree. Ann. Probab. 30(4), 1–27 (2002)

    Google Scholar 

  11. Mahieu, S., Ruelle, P.: Scaling fields in the two-dimensional abelian sandpile model. Phys. Rev E 64, 066130–(1–19) (2001)

    Article  Google Scholar 

  12. Meester, R., Redig, F., Znamenski, D.: The abelian sandpile; a mathematical introduction. Markov Proc. Rel. Fields 7, 509–523 (2002)

    MATH  Google Scholar 

  13. Rosenblatt, M.: Transition probability operators, Proc. Fifth Berkeley Symposium. Math. Statist. Prob. 2, 473–483 (1967)

    MATH  Google Scholar 

  14. Speer, E.: Asymmetric Abelian Sandpile Models. J. Stat. Phys. 71, 61–74 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Tsuchiya, V.T., Katori, M.: Phys. Rev. E 61, 1183 (2000)

    Article  MathSciNet  Google Scholar 

  16. Turcotte, D.L.: Self-Organized Criticality. Rep. Prog. Phys. 62, 1377–1429 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Spohn

Work partially supported by Tournesol project – nr. T2001.11/03016VF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C., Redig, F. & Saada, E. The Infinite Volume Limit of Dissipative Abelian Sandpiles. Commun. Math. Phys. 244, 395–417 (2004). https://doi.org/10.1007/s00220-003-1000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-1000-8

Keywords

Navigation