Skip to main content
Log in

Theory of Stochastic Laplacian Growth

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of “light” exponential operators in the Liouville conformal field theory on a pseudosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The potential equals zero on it

  2. It is supposed that the distant source is located at infinity.

  3. In fact, it becomes a cut-off dependent constant.

  4. In what follows we set \(M=1\) for notation simplicity. However, the construction of the Hamiltonian system can be performed for general M as well

References

  1. Witten, T., Sander, L.: Diffusion-limited aggregation. Phys. Rev. B 27, 5686 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Halsey, T.C.: Diffusion-limited aggregation: a model for pattern formation. Phys. Today 53(11), 36–41 (2000)

    Article  Google Scholar 

  3. Bensimon, D., Kadanoff, L., Liang, S., Shraiman, B., Tang, C.: Viscous flows in two dimensions. Rev. Mod. Phys. 58, 977 (1986)

    Article  ADS  MATH  Google Scholar 

  4. Shraiman, B., Bensimon, D.: Singularities in nonlocal interface dynamics. Phys. Rev. A 30, 2840 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. Howison, S.: Fingering in Hele-Shaw cells. J. Fluid Mech. 167, 439 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Mineev-Weinstein, M., Dawson, S.: Class of nonsingular exact solutions for Laplacian pattern formation. Phys. Rev. E 50, R24(R) (1994)

    Article  ADS  Google Scholar 

  7. Saffman, P., Taylor, G.: The penetration of a fluid into a porous medium of Hele-Shaw cell containing a more viscous fluid. Proc. R. Soc. Lond. Ser. A 245, 312 (1958)

    Article  ADS  MATH  Google Scholar 

  8. Shraiman, B.I.: Velocity selection and the Saffman-Taylor problem. Phys. Rev. Lett. 56, 2028 (1986)

    Article  ADS  Google Scholar 

  9. Hong, D.C., Langer, J.S.: Analytic theory of the selection mechanism in the Saffman-Taylor problem. Phys. Rev. Lett. 56, 2032 (1986)

    Article  ADS  Google Scholar 

  10. Combescot, R., et al.: Shape selection of Saffman-Taylor fingers. Phys. Rev. Lett. 56, 2036 (1986)

    Article  ADS  Google Scholar 

  11. Tanveer, S.: Analytic theory for the selection of a symmetric Saffman Taylor finger in a Hele Shaw cell. Phys. Fluids 30, 1589 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kruskal, M.D., Segur, H.: Asymptotics beyond all orders in a model of crystal growth. Stud. Appl. Math. 85, 129 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mineev-Weinstein, M.: Selection of the Saffman-Taylor finger width in the absence of surface tension: an exact result. Phys. Rev. Lett. 80, 2113 (1998); arXiv:patt-sol/9705004

  14. Hastings, M., Levitov, L.: Laplacian growth as one-dimensional turbulence. Phys. D. 116, 244 (1998); arXiv:cond-mat/9607021

  15. Vinogradov, Yu., Kufarev, P.: On some particular solutions of the problem of filtration (N.S.). Dokl. Akad. Nauk SSSR 57, 335 (1947)

    MathSciNet  MATH  Google Scholar 

  16. Galin, L.: Unsteady filtration with a free surface. Dokl. Akad. Nauk SSSR 47, 246 (1945)

    MathSciNet  MATH  Google Scholar 

  17. Polubarinova-Kochina, P.: On a problem of the motion of the contour of a petroleum shell Dokl. Akad. Nauk SSSR 47, 254 (1945)

    Google Scholar 

  18. Abanov, A., Mineev-Weinstein, M., Zabrodin, A.: Multi-cut solutions of Laplacian growth. Phys. D. 238, 1787 (2007); arXiv:0812.2622 [nlin.SI]

  19. Richardson, S.: Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J Fluid Mech. 56, 609 (1972)

    Article  ADS  MATH  Google Scholar 

  20. Novikov, P.S.: Inverse potential problem. Doklady Acad. Sci. USSR. 56, 609 (1938)

    Google Scholar 

  21. Davis, P.: The Schwarz Function and Its Applications. The Mathematical Association of America, Buffalo (1974)

    MATH  Google Scholar 

  22. Herglotz, G.: Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen. Preisschr. der Jablonowski gesselschaft 44, (1914)

  23. Mineev-Weinstein, M., Wiegmann, P., Zabrodin, A.: Integrable structure of interface dynamics. Phys. Rev. Lett. 84, 5106 (2000); arXiv:nlin/0001007 [nlin.SI]

  24. Kostov, I., Krichever, I., Mineev-Weinstein, M., Wiegmann, P., Zabrodin, A.: \(\tau \)-function for analytic curves, Random matrices and their applications, MSRI publications, 40, Cambridge University Press, 285 (2001); arXiv:hep-th/0005259

  25. Gruzberg, I., Leshchiner, D., Mineev-Weinstein, M.: Unpublished

  26. Garnett, J., Marshall, D.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  27. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79 (1951). MR 39968

    Article  MathSciNet  MATH  Google Scholar 

  28. Pelce, P.: Dynamics of Curved Fronts. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  29. Hurwitz, A., Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Springer-Verlag, Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie (1964)

  30. Flusher, M., Gustafsson, B.: Vortex Motion in Two-Dimensional Hydrodynamics. Royal Institute of Technology, Stockholm (1997). TRITA-MAT-9J-MA-02

  31. Khavinson, D., Shapiro, H.: The Schwarz Potential in \(R^n\) and the Cauchy Problem for the Laplace Equation. Royal Institute of Technology, Stockholm (1989)

    Google Scholar 

  32. Teodorescu, R., Bettelheim, E., Agam, O., Zabrodin, A., Wiegmann, P.: Normal random matrix ensemble as a growth problem. Nucl. Phys. B, 704, 407 (2005) ; arXiv:hep-th/0401165

  33. Agam, O., Bettelheim, E., Wiegmann, P., Zabrodin, A.: Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime. Phys. Rev. Lett. 88, 236801 (2002); arXiv:cond-mat/0111333

  34. Takhtajan, L.: Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves I. Current correlation functions. Lett. Math. Phys. 56, 181 (2001); arXiv:math/0102164 [math.QA]

  35. Flusher, M., Gustafsson, B.: Vortex Motion in Two-Dimensional Hydrodynamics. Royal Institute of Technolgogy, Stockholm. TRITA-MAT-9J-MA-02 (1997)

  36. Zamolodchikov, A., Zamolodchikov, Al.: Liouville field theory on a pseudosphere; arXiv:hep-th/0101152

  37. Zamolodchikov, A., Zamolodchikov, Al.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B. 477, 577 (1996); arXiv:hep-th/9506136;

  38. Zabrodin, A., Wiegmann, P.: Large-N expansion for the 2D Dyson gas. J. Phys. A 39, 8933 (2006); arXiv:hep-th/0601009

  39. Wiegmann, P., Zabrodin, A.: Large scale correlations in normal and general non-Hermitian matrix ensembles. J. Phys. A 36, 3411 (2003); arXiv:hep-th/0210159

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Alekseev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, O., Mineev-Weinstein, M. Theory of Stochastic Laplacian Growth. J Stat Phys 168, 68–91 (2017). https://doi.org/10.1007/s10955-017-1796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1796-9

Keywords

Navigation