Skip to main content
Log in

Thermal Relaxation of a QED Cavity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study repeated interactions of the quantized electromagnetic field in a cavity with single two-levels atoms. Using the Markovian nature of the resulting quantum evolution we study its large time asymptotics. We show that, whenever the atoms are distributed according to the canonical ensemble at temperature T>0 and some generic non-degeneracy condition is satisfied, the cavity field relaxes towards some invariant state. Under some more stringent non-resonance condition, this invariant state is thermal equilibrium at some renormalized temperature T *. Our result is non-perturbative in the strength of the atom-field coupling. The relaxation process is slow (non-exponential) due to the presence of infinitely many metastable states of the cavity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Høegh-Krohn, R.: Frobenius theory for positive maps of von Neumann algebras. Commun. Math. Phys. 64, 83 (1978)

    Article  MATH  ADS  Google Scholar 

  2. Araki, H., Ho, T.G.: Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Proc. Steklov. Inst. Math. 228, 191 (2000)

    MathSciNet  Google Scholar 

  3. Aschbacher, W., Pillet, C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.A.: Topics in nonequilibrium quantum statistical mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems I–III. Lecture Notes in Mathematics, vols. 1880–1882. Springer, Berlin (2006). vol. III, p. 1

    Google Scholar 

  5. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Attal, S., Joye, A.: Weak coupling and continuous limits for repeated quantum interactions. J. Stat. Phys. 126, 1241 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Attal, S., Joye, A.: The Langevin equation for a quantum heat bath. J. Funct. Anal. 247, 253 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. H. Poincaré 7 (2006)

  9. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems I–III. Lecture Notes in Mathematics, vols. 1880–1882. Springer, Berlin (2006)

    Google Scholar 

  10. Bach, V., Fröhlich, J., Sigal, M.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Bayfield, J.E.: Quantum Evolution. An Introduction to Time-Dependent Quantum Mechanics. Wiley, New York (1999)

    Google Scholar 

  12. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I and II. Texts and Monographs in Physics. Springer, Berlin (1987)

    Google Scholar 

  13. Bruneau, L., Pillet, C.A.: In preparation

  14. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Func. Anal. 239 (2006)

  15. Bruneau, L., Joye, A., Merkli, M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284, 553 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G.: Atom–Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  17. Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer-Büttiker formula. J. Math. Phys. 46, 042106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cornean, H.D., Duclos, P., Nenciu, G., Purice, R.: Adiabatically switched-on electrical bias in continuous systems and the Landauer-Büttiker formula. Preprint (2007). http://arxiv.org/abs/0708.0303

  19. Cornean, H.D., Neidhardt, H., Zagrebnov, V.: The effect of time dependent coupling on non-equilibrium steady states. Preprint (2008). http://arxiv.org/abs/0708.3931

  20. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91 (1974)

    Article  MATH  ADS  Google Scholar 

  21. Davies, E.B.: Markovian master equations II. Math. Ann. 219, 147 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. de Roeck, W.: Large deviations for currents in the spin-boson model. Preprint (2007). http://arxiv.org/abs/0704.3400

  23. Dereziński, J., Früboes, R.: Stationary van Hove limit. J. Math. Phys. 46, 063511 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli-Fierz systems. Ann. H. Poincaré 4, 739 (2003)

    Article  MATH  Google Scholar 

  25. Dereziński, J., Jakšić, V.: On the nature of Fermi Golden Rule for open quantum systems. J. Stat. Phys. 116, 411 (2004)

    Article  MATH  ADS  Google Scholar 

  26. Dereziński, J., Maes, C., de Roeck, W.: Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131, 341 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Dutra, S.M.: Cavity Quantum Electrodynamics. Wiley, New York (2005)

    Google Scholar 

  28. Fröhlich, J., Merkli, M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251, 235 (2004)

    Article  MATH  ADS  Google Scholar 

  29. Fröhlich, J., Merkli, M., Ueltschi, D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. H. Poincaré 4, 897 (2004)

    Google Scholar 

  30. Gelfand, I.M.: Normierte Ring. Mat. Sb. N.S. 9(51) (1941)

  31. Hudson, R.L., Parthasaraty, K.R.: Quantum Ito’s formula and stochastic evolution. Commun. Math. Phys. 93, 301 (1984)

    Article  MATH  ADS  Google Scholar 

  32. Jakšić, V., Pillet, C.-A.: On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys. 178, 627 (1996)

    Article  MATH  ADS  Google Scholar 

  33. Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131 (2002)

    Article  MATH  ADS  Google Scholar 

  34. Jakšić, V., Ogata, Y., Pillet, C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721 (2006)

    Article  MATH  ADS  Google Scholar 

  36. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for the spin-fermion system. Commun. Math. Phys. 268, 369 (2006)

    Article  MATH  ADS  Google Scholar 

  37. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for locally interacting fermionic open systems. Ann. H. Poincaré 8, 1013 (2007)

    Article  MATH  Google Scholar 

  38. Jakšić, V., Pautrat, Y., Pillet, C.-A.: Central limit theorem for locally interacting Fermi gas. Commun. Math. Phys. 285, 175 (2009)

    Article  ADS  Google Scholar 

  39. Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 56 (1952)

  40. Kraus, K.: States, Effects and Operations, Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  41. Merkli, M., Mück, M., Sigal, I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. H. Poincaré 8, 1539 (2007)

    Article  MATH  Google Scholar 

  42. Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54(6), 551 (1985)

    Article  ADS  Google Scholar 

  43. Nenciu, G.: Independent electron model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. Ogata, Y., Matsui, T.: Variational principle for non-equilibrium steady states of the XX model. Rev. Math. Phys. 15, 905 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pillet, C.-A.: Quantum dynamical systems. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems I–III. Lecture Notes in Mathematics, vols. 1880–1882. Springer, Berlin (2006). vol. I, p. 107

    Google Scholar 

  46. Raimond, J.-M., Haroche, S.: Monitoring the decoherence of mesoscopic quantum superpositions in a cavity. Sémin. Poincaré 2, 25 (2005)

    Google Scholar 

  47. Ruelle, D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schrader, R.: Perron-Frobenius theory for positive maps on trace ideals. Fields Inst. Commun. 30 (2001)

  49. Stinespring, W.F.: Positive functions on C *-algebras. Proc. Am. Math. Soc. 6 (1955)

  50. Tasaki, S., Matsui, T.: Fluctuation theorem, nonequilibrium steady states and MacLennan-Zubarev ensembles of a class of large quantum systems. Quantum Probab. White Noise Anal. 17, 100 (2003)

    Article  MathSciNet  Google Scholar 

  51. Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, Oxford (1939)

    MATH  Google Scholar 

  52. Tunnell, J.: A classical Diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71(12), 1816 (1993)

    Article  ADS  Google Scholar 

  54. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: Trapping states in micromaser. Phys. Rev. Lett. 82(19), 3795 (1999)

    Article  ADS  Google Scholar 

  55. Wellens, T., Buchleitner, A., Kümmerer, B., Maassen, H.: Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85(16), 3361 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-A. Pillet.

Additional information

Dedicated to Jürg Fröhlich and Thomas Spencer on the occasion of their 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneau, L., Pillet, CA. Thermal Relaxation of a QED Cavity. J Stat Phys 134, 1071–1095 (2009). https://doi.org/10.1007/s10955-008-9656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9656-2

Keywords

Navigation