Skip to main content
Log in

Central Limit Theorem for Locally Interacting Fermi Gas

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a locally interacting Fermi gas in its natural non-equilibrium steady state and prove the Quantum Central Limit Theorem (QCLT) for a large class of observables. A special case of our results concerns finitely many free Fermi gas reservoirs coupled by local interactions. The QCLT for flux observables, together with the Green-Kubo formulas and the Onsager reciprocity relations previously established [JOP4], complete the proof of the Fluctuation-Dissipation Theorem and the development of linear response theory for this class of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L., Bach A.: Quantum central limit theorems for strongly mixing random variables. Z. für Warscheinlichkeitstheorie verw. Gebiete 68, 393 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Open Quantum Systems III. Attal, S., Joye, A., Pillet, C.-A. (eds.), Lecture Notes in Mathematics 1882, New York: Springer, 2006

  3. Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Fluctuations in quasi-free fermionic systems. In preparation

  5. Aizenstadt V.V., Malyshev V.A.: Spin interaction with an ideal Fermi gas. J. Stat. Phys. 48, 51 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Billingsley P.: Probability and Measure. Wiley, New York (1979)

    MATH  Google Scholar 

  7. Botvich, D.D., Guta, M., Maassen, H.: Stability of Bose dynamical systems and branching theory. Preprint mp_arc 99–130, http://www.math.otexas.edu/mp-arc-bin/

  8. Botvich D.D., Malyshev V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas. Commun. Math. Phys. 61, 209 (1983)

    MathSciNet  Google Scholar 

  9. Botvich, D.D., Malyshev, V.A.: Asymptotic completeness and all that for an infinite number of fermions. In Many-Particle Hamiltonians: Spectra and Scattering. Minlos, R.A. (ed.), Advances in Soviet Mathematics 5, Providence, RI: Amer. Math. Soc., 1991, p. 39

  10. Bratteli O., Kishimoto A., Robinson D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin (1987)

    MATH  Google Scholar 

  12. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Second edition. Springer, Berlin (1996)

    Google Scholar 

  13. Cushen C.D., Hudson R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob. 8, 454 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davies E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  15. Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91 (1974)

    Article  MATH  ADS  Google Scholar 

  16. De Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1969)

    Google Scholar 

  17. Dereziński J.: Boson free fields as a limit of fields of a more general type. Rep. Math. Phys. 21, 405 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dereziński, J.: Introduction to representations of canonical commutation and anticommutation relations. In: Large Coulomb Systems—Quantum Electrodynamics. Dereziński, J., Siedentop, H. eds., Lecture Notes in Physics 695, New York: Springer, 2006

  19. Ellis R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    MATH  Google Scholar 

  20. Fröhlich J., Merkli M., Ueltschi D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897 (2004)

    Google Scholar 

  21. Goderis D., Vets P.: Central limit theorem for mixing quantum systems and the CCR algebra of fluctuations. Commun. Math. Phys. 122, 249 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Goderis D., Verbeure A., Vets P.: Noncommutative central limits. Probab. Theory Related Fields 82, 527 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goderis, D., Verbeure, A., Vets, P.: Quantum central limit and coarse graining. In: Quantum probability and applications, V. Lecture Notes in Math. 1442, Berlin-Heidelberg-New York: Springer, 1988, p. 178

  24. Goderis, D., Verbeure, A., Vets, P.: About the mathematical theory of quantum fluctuations. In: Mathematical Methods in Statistical Mechanics. Leuven Notes Math. Theoret. Phys. Ser. A Math. Phys., 1, Leuven: Leuven Univ. Press, 1989, p. 31

  25. Goderis D., Verbeure A., Vets P.: About the exactness of the linear response theory. Commun. Math. Phys. 136, 265 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Goderis D., Verbeure A., Vets P.: Theory of quantum fluctuations and the Onsager relations. J. Stat. Phys. 56, 721 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Goderis D., Verbeure A., Vets P.: Dynamics of fluctuations for quantum lattice systems. Commun. Math. Phys. 128, 533 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Giri N., von Waldenfels W.: An algebraic version of the central limit theorem. Z. für Warscheinlichkeitstheorie 42, 129 (1978)

    Article  MATH  Google Scholar 

  29. Haag R.: Quantum field theories with composite particles and asymptotic completeness. Phys. Rev. 112, 669 (1958)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Haag R.: The framework of quantum field theory. Nuovo Cimento Supp. 14, 131 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hepp K., Lieb E.H.: Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A8, 2517 (1973)

    ADS  MathSciNet  Google Scholar 

  32. Hepp K., Lieb E.H.: Phase transitions in reservoir driven open systems with applications to lasers and superconductivity. Helv. Phys. Acta 46, 573 (1973)

    Google Scholar 

  33. Jakšić, V., Kritchevski, E., Pillet, C.-A.: Mathematical theory of the Wigner-Weisskopf atom. In Large Coulomb Systems—Quantum Electrodynamics. Dereziński, J., Siedentop, H. (eds.), Lecture Notes in Physics 695, New York: Springer, 2006

  34. Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721 (2006)

    Article  MATH  ADS  Google Scholar 

  35. Jakšić V., Ogata Y., Pillet C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula for the spin-fermion system. Commun. Math. Phys. 268, 401 (2006)

    Google Scholar 

  37. Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013 (2007)

    Article  MATH  Google Scholar 

  38. Jakšić, V., Pautrat, Y., Pillet, C.-A.: A non-commutative Lévy-Cramér theorem. Preprint

  39. Jakšić V., Pillet C-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285 (2001)

    Article  MATH  ADS  Google Scholar 

  40. Jakšić V., Pillet C.-A.: Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131 (2002)

    Article  MATH  ADS  Google Scholar 

  41. Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787 (2002)

    Article  MATH  Google Scholar 

  42. Jakšić V., Pillet C-A.: A note on the entropy production formula. Contemp. Math. 327, 175 (2003)

    Google Scholar 

  43. Jakšić V., Pillet C.-A.: On the strict positivity of entropy production. Contemp. Math. 447, 153–163 (2007)

    Google Scholar 

  44. Jakšić, V., Pillet, C.-A.: In preparation

  45. Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    MATH  Google Scholar 

  46. Kubo R., Toda M., Hashitsune N.: Statistical Physics II. Second edition. Springer, Berlin (1991)

    Google Scholar 

  47. Kuperberg G.: A tracial quantum central limit theorem. Trans. Amer. Math. Soc. 357, 459–471 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Liverani, C.: Central limit theorem for deterministic systems. International Conference on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser. 362, Harlow: Longman, 1996, pp. 56–75

  49. Matsui T.: Bosonic central limit theorem for the one-dimensional XY model. Rev. Math. Phys. 14, 675 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Matsui T.: On the algebra of fluctuation in quantum spin chains. Ann. Henri Poincaré 4, 63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Meyer Y.: Quantum Probability for Probabilists. Lecture Notes in Mathematics 1358. Springer Verlag, Berlin (1993)

    Google Scholar 

  52. Manuceau J., Sirugue M., Testard D., Verbeure A.: The smallest C *-algebra for canonical commutations relations. Commun. Math. Phys. 32, 271 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  53. Ohya M., Petz D.: Quantum Entropy and its use. Springer, Berlin (1993)

    MATH  Google Scholar 

  54. Petz, D.: An invitation to the algebra of canonical commutation relations. Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics, 2. Leuven: Leuven University Press, 1990

  55. Pillet, C-A.: Quantum dynamical systems. In: Open Quantum Systems I. Attal, S., Joye, A., Pillet, C.-A. (eds.), Lecture Notes in Mathematics 1880, New York: Springer, 2006

  56. Robinson D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171 (1973)

    Article  MATH  ADS  Google Scholar 

  57. Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147 (192))

    MathSciNet  Google Scholar 

  58. Ruelle D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ruelle D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Ruelle, D.: Topics in quantum statistical mechanics and operator algebras. http://arxiv.org/list/math-ph/0107007, 2001

  61. Spohn H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Pautrat.

Additional information

Communicated by H.-T. Yau

UMR 6207, CNRS, Université de la Méditerranée, Université de Toulon et Université de Provence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakšić, V., Pautrat, Y. & Pillet, CA. Central Limit Theorem for Locally Interacting Fermi Gas. Commun. Math. Phys. 285, 175–217 (2009). https://doi.org/10.1007/s00220-008-0610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0610-6

Keywords

Navigation