Skip to main content
Log in

Fluctuations of Quantum Currents and Unravelings of Master Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The very notion of a current fluctuation is problematic in the quantum context. We study that problem in the context of nonequilibrium statistical mechanics, both in a microscopic setup and in a Markovian model. Our answer is based on a rigorous result that relates the weak coupling limit of fluctuations of reservoir observables under a global unitary evolution with the statistics of the so-called quantum trajectories. These quantum trajectories are frequently considered in the context of quantum optics, but they remain useful for more general nonequilibrium systems. In contrast with the approaches found in the literature, we do not assume that the system is continuously monitored. Instead, our starting point is a relatively realistic unitary dynamics of the full system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-Salem, W.K.: On the fluctuations of macroscopic observables in quantum nonequilibrium steady states. math-ph/0701070 (2007)

  2. Alicki, R.: Invitation to quantum dynamical semigroups. In: Garbaczewski, P., Olkiewicz, R. (eds.) Dynamics of Dissipation. Lecture Notes in Physics. Springer, Berlin (2002)

    Google Scholar 

  3. Aschbacher, W., Jaksic, V., Pautrat, Y., Pillet, C.-A.: Transport properties of quasi-free Fermions. J. Math. Phys. (2008, to appear). mp-arc 06-300

  4. Attal, S.: Quantum open systems. Commun. Math. Phys. II, 91–110 (2003) (The Markovian approach)

    Google Scholar 

  5. Attal, S., Joye, A.: The Langevin equation for a quantum heat bath. J. Func. Anal. 247, 253–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. H. Poincaré (Phys. Théor.) 7, 59–104 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Avron, J.E., Bachmann, S., Graf, G.M., Klich, I.: Fredholm determinants and the statistics of charge transport. arXiv:0705.0099 (2007)

  8. Bach, V., Frohlich, J., Sigal, I.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Barchielli, A.: Continual measurements in quantum mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Lecture notes Grenoble Summer School on Open Quantum Systems. Lecture Notes in Mathematics. Springer, Berlin (2003)

    Google Scholar 

  10. Belavkin, V.P.: Eventum mechanics of quantum trajectories: Continual measurements, quantum predictions and feedback control. math-ph/0702079 (2007)

  11. Bouten, L., Maassen, H., Kümmerer, B.: Constructing the Davies process of resonance fluorescence with quantum stochastic calculus. Opt. Spectrosc. 94, 911–919 (2003)

    Article  ADS  Google Scholar 

  12. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  13. Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    Google Scholar 

  14. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  MATH  ADS  Google Scholar 

  15. Dereziński, J.: Introduction to Representations of Canonical Commutation and Anticommutation Relations. Lecture Notes in Physics, vol. 695. Springer, Berlin (2006)

    Google Scholar 

  16. Dereziński, J., Jakšić, V.: On the nature of Fermi golden rule for open quantum systems. J. Stat. Phys. 116, 411–423 (2004)

    Article  Google Scholar 

  17. Dereziński, J., Jakšić, V., Pillet, C.-A.: Perturbation theory of W *-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15, 447–489 (2003)

    Article  MathSciNet  Google Scholar 

  18. Dereziński, J., De Roeck, W.: Extended weak coupling limit for Pauli-Fierz operators. Commun. Math. Phys. (2006, to appear). math-ph/0610054

  19. Dereziński, J., De Roeck, W.: Reduced and extended weak coupling limit. Banach Cent. Publ. (2007, to appear). arXiv:0704.0669

  20. Esposito, M., Harbola, U., Mukamel, S.: Fluctuation theorem for counting-statistics in electron transport through quantum junctions. Phys. Rev. B 75, 155316 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Esposito, M., Mukaumel, S.: Fluctuation theorems for quantum master equations. Phys. Rev. E 73, 046129 (2006). e-print: cond-mat/0602679

    Article  ADS  MathSciNet  Google Scholar 

  22. Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, New York (2004)

    MATH  Google Scholar 

  23. Hiai, F., Mosony, M., Tomohiro, O.: Large deviations and Chernoff bound for certain correlated states on the spin chain. arXiv:0706.2141 (2007)

  24. Van Hove, L.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21, 517–540 (1955)

    MATH  MathSciNet  Google Scholar 

  25. Hudson, R.L., Parathasaraty, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3), 301–323 (1984)

    Article  MATH  ADS  Google Scholar 

  26. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. (2005, to appear)

  27. Jakšić, V., Pillet, C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002)

    Article  Google Scholar 

  28. Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)

    Article  ADS  Google Scholar 

  29. Klich, I.: Full counting statistics: An elementary derivation of Levitov’s formula. In: Nazarov, Y.V., Blanter, Y.M. (eds.) Quantum Noise. Kluwer, Dordrecht (2003)

    Google Scholar 

  30. Kurchan, J.: Quantum fluctuation theorem. arXiv cond-mat/0007360v2 (2000)

  31. Lebowitz, J., Spohn, H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)

    Article  Google Scholar 

  32. Lenci, M., Rey-Bellet, L.: Large deviations in quantum lattice systems: one-phase region. J. Stat. Phys. 119, 715–746 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lesovik, G.B.: Excess quantum shot noise in 2d ballistic point contacts. JETP Lett. 49, 592 (1989)

    ADS  Google Scholar 

  34. Lesovik, G.B., Levitov, L.S.: Charge distribution in quantum shot noise. JETP Lett. 58, 225–230 (1993)

    Google Scholar 

  35. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Matsui, T., Tasaki, S.: Fluctuation theorem, nonequilibrium steady states and Maclennan-Zubarev ensembles of L 1-asymptotic Abelian C * dynamical systems. Quantum Probab. White Noise Anal. 17, 100–119 (2003)

    MathSciNet  Google Scholar 

  37. Monnai, T., Tasaki, S.: Quantum correction of fluctuation theorem. e-print: cond-mat/0308337 (2003)

  38. Mukamel, S.: Quantum extension of the Jarzynski relation: Analogy with stochastic dephasing. Phys. Rev. Lett. 90, 170604 (2003)

    Article  ADS  Google Scholar 

  39. Netocny, K., Redig, F.: Large deviations for quantum spin systems. J. Stat. Phys. 117, 521 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. De Roeck, W.: Large deviation generating function for energy transport in the Pauli-Fierz model. arXiv:0704.3400 (2007)

  41. De Roeck, W.: Quantum fluctutation theorem: can we go from micro to meso? Comptes Rend. Phys. 8, 674–683 (2007)

    Article  ADS  Google Scholar 

  42. De Roeck, W., Maes, C.: A quantum version of free energy—irreversible work relations. Phys. Rev. E 69(2), 026115 (2004)

    Article  ADS  Google Scholar 

  43. De Roeck, W., Maes, C.: Fluctuations of the dissipated heat in a quantum stochastic model. Rev. Math. Phys. 18, 619–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Srinivas, M.D., Davies, E.B.: Photon counting probabilities in quantum optics. Opt. Acta 28, 981–996 (1981)

    MathSciNet  Google Scholar 

  45. Talkner, P., Lutz, E., Hanggi, P.: Fluctuation theorems: Work is not an observable. Phys. Rev. E 75, 050102(R) (2007)

    Article  ADS  Google Scholar 

  46. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech De Roeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dereziński, J., De Roeck, W. & Maes, C. Fluctuations of Quantum Currents and Unravelings of Master Equations. J Stat Phys 131, 341–356 (2008). https://doi.org/10.1007/s10955-008-9500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9500-8

Keywords

Navigation