Skip to main content
Log in

Rheological Behavior of Polyvinyl Alcohol/Starch Blends: Influence of the Sorbitol Citrate Content

  • Research
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Problems associated with non-biodegradable materials are well known. Polyvinyl alcohol (PVOH)/starch (ST) blend has been reported as a good alternative to replacing non-biodegradable materials in packaging applications. However, this blend is incompatible. Thus, the first aim of this study was to use the sorbitol citrate (SC) as a plasticizing and compatibilizing agent in film-forming solutions composed of 25% w/w PVOH and 75% w/w ST. The second aim was to determine the effect of SC content (0.5, 10, 15 and 20% w/w ) on the rheological properties of this blend. The steady shear analysis was carried out at 60, 70, 80, and 90 °C, while the sweep amplitude and the frequency analyses were carried out at 90 °C. The power law flow index (\(n\)) showed no dependence on the SC content, but the consistency index \(\left(k\right)\) followed the opposite behavior. On the other hand, the values of the reduction percentage of the activation energy (\({E}_{a})\) of the flow (%r\({E}_{a})\) caused by SC were between 63.56 and 70.12%. This means that SC ostensibly increased the flow of these materials. Viscosity (η) and \({E}_{a}\) values of the PVOH/ST blends prepared with SC were lower than 1000 Pa.s and 2.60 kJ.mol−1 respectively. All samples showed a thixotropic behavior and it increased with the SC content. The areas of the hysteresis region of these materials were between 101.11 and 192.14 Pa.s. It indicates that these materials have a good elastic recovery. Cole-Cole graphs showed that SC improved the miscibility of the PVOH/ST blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed in the current study are available from the corresponding author of this paper on reasonable request.

References

  1. Caicedo C, Díaz-Cruz CA, Jiménez-Regalado EJ, Aguirre-Loredo RY (2022) Effect of plasticizer content on mechanical and water vapor permeability of maize starch/PVOH/chitosan composite films. Mater (Basel) 15(4):1274. https://doi.org/10.3390/ma15041274

    Article  ADS  CAS  Google Scholar 

  2. Wibisono Y, Fadila CR, Saiful S, Bilad MR (2020) Facile approaches of polymeric face masks reuse and reinforcements for micro-aerosol droplets and viruses filtration: a review. Polym (Basel) 12:1–18. https://doi.org/10.3390/polym12112516

    Article  CAS  Google Scholar 

  3. Maris J, Bourdon S, Brossard JM et al (2018) Mechanical recycling: compatibilization of mixed thermoplastic wastes. Polym Degrad Stab 147:245–266. https://doi.org/10.1016/j.polymdegradstab.2017.11.001

    Article  CAS  Google Scholar 

  4. Thakur S, Verma A, Sharma B et al (2018) Recent developments in recycling of polystyrene based plastics. Curr Opin Green Sustain Chem 13:32–38. https://doi.org/10.1016/j.cogsc.2018.03.011

    Article  Google Scholar 

  5. Gaaz TS, Sulong AB, Akhtar MN et al (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20:22833. https://doi.org/10.3390/MOLECULES201219884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kumar P, Tanwar R, Gupta V et al (2021) Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packaging: preparation, characterization and antioxidant activity. Int J Biol Macromol 187:223–231. https://doi.org/10.1016/j.ijbiomac.2021.07.136

    Article  CAS  PubMed  Google Scholar 

  7. Loh ZP, Mo KH, Tan CG, Yeo SH (2019) Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres. Sadhana - Acad Proc Eng Sci 44:1–9. https://doi.org/10.1007/s12046-019-1072-6

    Article  CAS  Google Scholar 

  8. Zhang M, Zheng Y, Jin Y et al (2022) Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int J Biol Macromol 202:80–90. https://doi.org/10.1016/j.ijbiomac.2022.01.074

    Article  CAS  PubMed  Google Scholar 

  9. Chai WL, Chow JD, Chen CC et al (2009) Evaluation of the biodegradability of polyvinyl alcohol/starch blends: a methodological comparison of environmentally friendly materials. J Polym Environ 17:71–82. https://doi.org/10.1007/s10924-009-0123-1

    Article  CAS  Google Scholar 

  10. Ali Nezamzadeh S, Ahmadi Z, Afshari Taromi F (2017) From microstructure to mechanical properties of compatibilized polylactide/thermoplastic starch blends. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.44734

    Article  CAS  Google Scholar 

  11. Ounkaew A, Kasemsiri P, Kamwilaisak K et al (2018) Polyvinyl alcohol (PVA)/Starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ 26:3762–3772. https://doi.org/10.1007/s10924-018-1254-z

    Article  CAS  Google Scholar 

  12. Domene-López D, Guillén MM, Martin-Gullon I et al (2018) Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr Polym 202:299–305. https://doi.org/10.1016/j.carbpol.2018.08.137

    Article  CAS  PubMed  Google Scholar 

  13. Sin LT, Bee ST, Tee TT et al (2013) Characterization of α-tocopherol as interacting agent in polyvinyl alcohol-starch blends. Carbohydr Polym 98:1281–1287. https://doi.org/10.1016/j.carbpol.2013.07.069

    Article  CAS  PubMed  Google Scholar 

  14. Bellelli M, Licciardello F, Pulvirenti A, Fava P (2018) Properties of poly(vinyl alcohol) films as determined by thermal curing and addition of polyfunctional organic acids. Food Packag Shelf Life 18:95–100. https://doi.org/10.1016/j.fpsl.2018.10.004

    Article  Google Scholar 

  15. Hiremani VD, Sataraddi S, Bayannavar PK et al (2020) Mechanical, optical and antioxidant properties of 7-Hydroxy-4-methyl coumarin doped polyvinyl alcohol/oxidized maize starch blend films. SN Appl Sci 2:1–18. https://doi.org/10.1007/s42452-020-03399-2

    Article  CAS  Google Scholar 

  16. Yahia R, Owda ME, Abou-Zeid RE et al (2023) Biodegradable, UV absorber and thermal stable bioplastic films from waxy corn starch/polyvinyl alcohol blends. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03683-8

    Article  Google Scholar 

  17. Gadhave RV, Mahanwar PA, Gadekar PT, Kasbe PS (2020) A study on the effect of starch–polyvinyl alcohol blends by addition of citric acid and boric acid for enhancement in performance properties of polyvinyl acetate-based wood adhesive. J Indian Acad Wood Sci 17:9–20. https://doi.org/10.1007/s13196-019-00249-6

    Article  Google Scholar 

  18. Kong R, Wang J, Cheng M, Lu W, Chen M, Zhang R, Wang X (2020) Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Int J Biol Macromol 164:1631–1639. https://doi.org/10.1016/j.ijbiomac.2020.08.016

    Article  CAS  PubMed  Google Scholar 

  19. Valencia A, Rivera C, Murillo E (2013) Estudio de las propiedades de mezclas de alcohol polivinílico almidón de yuca-sorbitol obtenidas por casting. Rev Colomb Mater 4:41–55.

    Google Scholar 

  20. Chen C, Zong L, Wang J, Xie J (2021) Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr Polym 272:118448. https://doi.org/10.1016/j.carbpol.2021.118448

    Article  CAS  PubMed  Google Scholar 

  21. Wang XJ, Gross RA, McCarthy SP (1995) Rheological study of biodegradable blends of starch and polyvinyl alcohol. J Environ Polym Degrad 3:161–167. https://doi.org/10.1007/BF02068467

    Article  CAS  Google Scholar 

  22. Meree CE, Schueneman GT, Meredith JC, Shofner ML (2016) Rheological behavior of highly loaded cellulose nanocrystal/poly(vinyl alcohol) composite suspensions. Cellulose 23:3001–3012. https://doi.org/10.1007/s10570-016-1003-1

    Article  CAS  Google Scholar 

  23. Wu J, Chen N, Wang Q (2018) Preparation of novel thermoplastic poly(vinyl alcohol) with improved processability for fused deposition modeling. Polym Adv Technol 29:1447–1455. https://doi.org/10.1002/pat.4256

    Article  CAS  Google Scholar 

  24. Sin LT, Rahmat AR, Rahman WAWA et al (2010) Rheology and thermal transition state of polyvinyl alcohol-cassava starch blends. Carbohydr Polym 81:737–739. https://doi.org/10.1016/j.carbpol.2010.03.044

    Article  CAS  Google Scholar 

  25. Gautam S, Sharma B, Jain P (2021) Dynamic shear rheological study of soy protein isolate/poly(vinyl alcohol) bionanocomposites reinforced with montmorillonite nanoparticles. Polym Compos 42:2349–2359. https://doi.org/10.1002/pc.25982

    Article  CAS  Google Scholar 

  26. Ahmed YMZ, Ewais EMM, El-Sheikh SM (2015) Potato starch consolidation of aqueous HA suspension. J Asian Ceram Soc 3:108–115. https://doi.org/10.1016/j.jascer.2014.11.007

    Article  Google Scholar 

  27. Berzin F, Amornsakchai T, Lemaitre A et al (2019) Influence of fiber content on rheological and mechanical properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusion. Polym Compos 40:4519–4529. https://doi.org/10.1002/pc.25308

    Article  CAS  Google Scholar 

  28. Diani J, Liu Y, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 46(4):486–492. https://doi.org/10.1002/pen.20497

    Article  CAS  Google Scholar 

  29. Boonsuk P, Sukolrat A, Kaewtatip K et al (2020) Modified cassava starch/poly(vinyl alcohol) blend films plasticized by glycerol: structure and properties. J Appl Polym Sci 137:1–13. https://doi.org/10.1002/app.48848

    Article  CAS  Google Scholar 

  30. Song X, Cheng L (2014) Chitosan/kudzu starch/ascorbic acid films: rheological, wetting, release, and antibacterial properties. Afr J Agric Res 9:3816–3824. https://doi.org/10.5897/AJAR2014.8641

    Article  Google Scholar 

  31. Hsieh TT, Tiu C, Simon GP (2001) Melt rheology of aliphatic hyperbranched polyesters with various molecular weights. Polym (Guildf) 42:1931–1939. https://doi.org/10.1016/S0032-3861(00)00441-9

    Article  CAS  Google Scholar 

  32. Manshor NM, Jai J, Hamzah F, Yusof NM (2019) Rheological properties of cassava starch film forming solution with kaffir lime oil. Int J Recent Technol Eng 8:6781–6786. https://doi.org/10.35940/ijrte.d5222.118419

    Article  Google Scholar 

  33. Tadros T (2004) Application of rheology for assessment and prediction of the long term physical stability of emulsions. Adv Coll Interfac Sci. 108:227–258. https://doi.org/10.1016/j.cis.2003.10.025

    Article  CAS  Google Scholar 

  34. Krystyjan M, Sikora M, Adamczyk G et al (2016) Thixotropic properties of waxy potato starch depending on the degree of the granules pasting. Carbohydr Polym 141:126–134. https://doi.org/10.1016/j.carbpol.2015.12.063

    Article  CAS  PubMed  Google Scholar 

  35. Gałkowska D, Dudycz A, Juszczak L (2021) Effect of potato protein on thermal and rheological characteristics of maize starches with different amylose contents. Starch/Staerke 73:1–10. https://doi.org/10.1002/star.202000216

    Article  CAS  Google Scholar 

  36. da Fonsêca JHL, d’Ávila MA (2021) Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions. Rheol Acta 60:497–509. https://doi.org/10.1007/s00397-021-01292-2

    Article  CAS  Google Scholar 

  37. da Mata GC, Morais MS, de Oliveira WP, Aguiar ML (2022) Composition effects on the morphology of PVA/chitosan electrospun nanofibers. Polym (Basel) 14:1–19. https://doi.org/10.3390/polym14224856

    Article  CAS  Google Scholar 

  38. Irani M, Razavi SMA, Abdel-Aal ESM, Taghizadeh M (2016) Influence of variety, concentration, and temperature on the steady shear flow behavior and thixotropy of canary seed (Phalaris canariensis) starch gels. Starch/Staerke 68:1203–1214. https://doi.org/10.1002/star.201500348

    Article  CAS  Google Scholar 

  39. Agrawal P, Araújo APM, Lima JCC et al (2019) Rheology, mechanical properties and morphology of poly(lactic acid)/ethylene vinyl acetate blends. J Polym Environ 27:1439–1448. https://doi.org/10.1007/s10924-019-01445-8

    Article  CAS  Google Scholar 

  40. Bhattacharjee SK, Chakraborty G, Kashyap SP et al (2021) Study of the thermal, mechanical and melt rheological properties of rice straw filled poly (butylene succinate) bio-composites through reactive extrusion process. J Polym Environ 29:1477–1488. https://doi.org/10.1007/s10924-020-01973-8

    Article  CAS  Google Scholar 

  41. Br U, Meier W, Practices BD, EPFR-AIAR of DIPD of S and LF and PDS for MB Product Design and Engineering practical food Rheology - An Interpretive Approach Rheology of Dispersions Industrial Product design of solids and liquids Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals

  42. Zhang X, Liu W, Liu W, Qiu X (2020) High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. Int J Biol Macromol 142:551–558. https://doi.org/10.1016/j.ijbiomac.2019.09.129

    Article  CAS  PubMed  Google Scholar 

  43. Soares GA, Castro AD, De, Cury BSF, Evangelista RC (2013) Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr Polym 91:135–142. https://doi.org/10.1016/j.carbpol.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  44. Mandal S, Dasmahapatra AK (2021) Effect of aging on the microstructure and physical properties of poly(vinyl alcohol) hydrogel. J Polym Res 28:1–12. https://doi.org/10.1007/s10965-021-02624-9

    Article  CAS  Google Scholar 

  45. Wu L, Huang S, Zheng J et al (2019) Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int J Biol Macromol 140:538–545. https://doi.org/10.1016/j.ijbiomac.2019.08.142

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Wang Y, Chang C (2010) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/pva sponges. Macromol Mater Eng 295:137–145. https://doi.org/10.1002/mame.200900212

    Article  CAS  Google Scholar 

  47. Baniasadi H, Madani Z, Ajdary R et al (2021) Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater Sci Eng C 130:112424. https://doi.org/10.1016/j.msec.2021.112424

    Article  CAS  Google Scholar 

  48. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2004) Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym 58:139–147. https://doi.org/10.1016/j.carbpol.2004.06.002

    Article  CAS  Google Scholar 

  49. Sojoudiasli H, Heuzey MC, Carreau PJ (2014) Rheological, morphological and mechanical properties of flax fiber polypropylene composites: influence of compatibilizers. Cellulose 21:3797–3812. https://doi.org/10.1007/s10570-014-0375-3

    Article  CAS  Google Scholar 

  50. Kracalik M (2018) New approach for investigation of reinforcement in polymer nanocomposites using oscillatory shear flow data. Epa - J Silic Based Compos Mater 70:42–47. https://doi.org/10.14382/epitoanyag-jsbcm.2018.9

    Article  Google Scholar 

  51. Zhang Z, Wan D, Xing H et al (2012) A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polym (Guildf) 53:121–129. https://doi.org/10.1016/j.polymer.2011.11.033

    Article  CAS  Google Scholar 

  52. Krauklis AE, Akulichev AG, Gagani AI, Echtermeyer AT (2019) Time-temperature-plasticization superposition principle: predicting creep of a plasticized epoxy. Polym (Basel). https://doi.org/10.3390/polym11111848

    Article  Google Scholar 

  53. Ivanova R, Kotsilkova R (2018) Rheological study of poly(lactic) acid nanocomposites with carbon nanotubes and graphene additives as a tool for materials characterization for 3D printing application. Appl Rheol 28:1–10. https://doi.org/10.3933/ApplRheol-28-54014

    Article  Google Scholar 

  54. Zhang Y, Wang L, Han C (2022) Biodegradable poly(butylene adipate-co-terephthalate)/poly(vinyl acetate) blends with improved rheological and mechanical properties. J Polym Res. https://doi.org/10.1007/s10965-022-02995-7

    Article  Google Scholar 

  55. Khajeheian MB, Rosling A (2015) Rheological and thermal properties of peroxide-modified poly(l-lactide)s for blending purposes. J Polym Environ 23:62–71. https://doi.org/10.1007/s10924-014-0693-4

    Article  CAS  Google Scholar 

  56. Hammani S, Moulai-Mostefa N, Samyn P, Bechelany M, Dufresne A, Barhoum A, Morphology (2020) Rheology and crystallization in relation to the viscosity ratio of Polystyrene/Polypropylene polymer blends. Mater (Basel) 13(4):1–20. https://doi.org/10.3390/ma13040926

    Article  CAS  Google Scholar 

  57. Bin-Dahman OA, Rahaman M, Khastgir D, Al-Harthi MA (2018) Electrical and dielectric properties of poly(vinyl alcohol)/starch/graphene nanocomposites. Can J Chem Eng 96:903–911. https://doi.org/10.1002/cjce.22999

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

CTT-M—Investigation, Formal analysis, Methodology, Data curation and Writing original draft; EAM—Formal analysis, Supervision, Conceptualization, Resources, Validation and Writing—review and editing.

Corresponding author

Correspondence to Edwin A. Murillo.

Ethics declarations

Conflict of interest

We do not have any conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Medina, C.T., Murillo, E.A. Rheological Behavior of Polyvinyl Alcohol/Starch Blends: Influence of the Sorbitol Citrate Content. J Polym Environ 32, 1233–1243 (2024). https://doi.org/10.1007/s10924-023-03034-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03034-2

Keywords

Navigation