Skip to main content
Log in

Study of the Thermal, Mechanical and Melt Rheological Properties of Rice Straw Filled Poly (Butylene Succinate) Bio-composites Through Reactive Extrusion Process

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study involved valorisation of rice straw (RS) in the form of rice straw flour (RSF) for the fabrication of poly (butylene succinate) (PBS) based bio-composites through a melt extrusion method, using dicumyl peroxide (DCP) as the cross-networking agent, and study of the morphological, thermal, mechanical and rheological behaviours of the extruded bio-composites. A layered like morphology with good dispersion of RSF in the PBS matrix was observed from X-ray diffraction and field emission scanning electron microscopic analysis. Thermo gravimetric analysis showed that the incorporation of RSF improved the thermal stability of PBS, whereas the value of the different thermal properties i.e. glass transition temperature (Tg), melting temperature (Tm) remained almost identical. Addition of DCP (2 wt%) into the PBS-RSF systems increased both the tensile strength and elongation at break (EB) (%) values. Rheological investigation of the bio-composites showed that the storage modulus (G') was less than the loss modulus (G") over the angular frequency (ω) range until crossover, corroborating the viscous behaviour of the samples. The complex viscosity, η' was constant when ω was less than 1 rad/s for all the samples, showing Newtonian characteristics. Shear thinning behaviour was observed when ω was greater than 1 rad/s. Furthermore, no phase separation was observed from the Han plot and good compatibility was noticed from the Cole–Cole plot, which signifies good rheological properties of the fabricated bio-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms an important part of an ongoing study.

References

  1. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233

    Article  CAS  Google Scholar 

  2. Scott G (2000) ‘Green’ polymers. Polym Degrad Stab 68:1–7

    Article  CAS  Google Scholar 

  3. Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid): 1 Melt-spun and solution-spun fibres. Polymer 23:1587–1593

    Article  CAS  Google Scholar 

  4. Shalumon KT, Anulekha KH, Chennazhi KP, Tamura H, Nair SV, Jayakumar R (2011) Fabrication of chitosan/poly (caprolactone) nano-fibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48(4):571–576

    Article  CAS  Google Scholar 

  5. Lee SH, Wang S (2006) Biodegradable polymers/ bamboo fiber bio-composite with bio-based coupling agent. Compos Part A 37:80–91

    Article  CAS  Google Scholar 

  6. Lu X, Huang J, He G, Yang L, Zhang N, Zhao Y, Qu J (2013) Preparation and characterization of cross-linked poly (butylene succinate) by multifunctional TDI-TMP polyurethane pre-polymer. Ind Eng Chem Res 52(38):13677–13684

    Article  CAS  Google Scholar 

  7. Wang H, Xu M, Wu Z, Zhang W, Ji J, Chu PK (2012) Biodegradable poly (butyelene succinate) modified by gas plasmas and their in vitro functions as bone implants. ACS Appl Mater Interface 4(8):4380–4386

    Article  CAS  Google Scholar 

  8. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy. https://doi.org/10.1166/jbmb.2009.1001

    Article  Google Scholar 

  9. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A 42:1710–1718

    Article  Google Scholar 

  10. Sinha Ray S, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites. Macromolecules 36(7):2355–2367

    Article  Google Scholar 

  11. Qiu Z, Ikehara T, Nishi T (2003) Poly (hydroxybutyrate)/Poly (butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 44(8):2503–2508

    Article  CAS  Google Scholar 

  12. Gogoi R, Kumar N, Mireja S, Sethi SK, Manik G (2019) Natural fibre based hybrid polypropylene composites: an insight into thermal properties. Twenty-Second International Conference on Composite Materials (ICCM22), Melbourne, Australia

  13. Allahbakhsh A (2020) PVC/rice straw/SDBS-modified graphene oxide sustainable nanocomposites: melt mixing process and electrical insulation characteristics. Compos A 134:105902

    Article  CAS  Google Scholar 

  14. Gogoi R, Kumar N, Mireja S, Ravindranath SS, Manik G, Sinha S (2019) Effect of hollow glass microspheres on the morphology, rheology and crystallinity of short bamboo fiber-reinforced hybrid polypropylene composite. JOM 71(2):548–558

    Article  CAS  Google Scholar 

  15. Park BD, Wi SG, Lee KH, Singh AP, Yoon TH, Kim YS (2003) Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenerg 25:319–327

    Article  CAS  Google Scholar 

  16. Ohkita T, Lee SH (2005) Crystallization behaviour of poly (butylene succinate)/corn starch biodegradable composite. J Appl Polym Sci 97:1107–1114

    Article  CAS  Google Scholar 

  17. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol) reinforced poly(butylene succinate) bio-composites. J Appl Polym Sci 122:2456–2466

    Article  CAS  Google Scholar 

  18. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly (butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94

    Article  CAS  Google Scholar 

  19. Ishiaku US, Khondker OA, Baba S, Nakai A, Hamada H (2005) Processing and characterization of short fiber reinforced jute/poly butylene succinate biodegradable composites: the effect of weld-line. J Polym Environ 13:151–157

    Article  CAS  Google Scholar 

  20. Bin T, Qu J, Liu L, Feng Y, Hu S, Yin X (2011) Non- isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525:141–149

    Article  CAS  Google Scholar 

  21. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B 42:1648–1656

    Article  Google Scholar 

  22. Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly (butylene succinate) composites: effects of fiber loading, fiber length, and maleated poly (butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063

    Article  CAS  Google Scholar 

  23. Han SO, Lee SM, Park WH, Cho D (2006) Mechanical and thermal properties of waste silk fiber reinforced poly (butylene succinate) bio-composites. J Appl Polym Sci 100:4972–4980

    Article  CAS  Google Scholar 

  24. Lee MW, Han SO, Seo YB (2008) Red algae fibre/ poly(butylene succinate) bio-composites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Technol 68:1266–1272

    Article  CAS  Google Scholar 

  25. Flores ED, Funabashi M, Kunioka M (2009) Mechanical properties and biomass carbon ratios of poly (butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J Appl Polym Sci 112:3410–3417

    Article  CAS  Google Scholar 

  26. Kuan CF, Ma CCM, Kuan HC, Wu HL, Liao YM (2006) Preparation and characterization of the novel water cross-linked cellulose reinforced poly(butylene succinate) composites. Compos Sci Technol 66:2231–2241

    Article  CAS  Google Scholar 

  27. Chen R, Zou W, Zhang H, Zhang G, Yang Z, Jin G, Qu J (2015) Thermal behaviour, dynamic mechanical properties and rheological properties of poly (butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167

    Article  CAS  Google Scholar 

  28. Monika PAK, Bhasney SM, Bhagbati P, Katiyar V (2018) Effect of dicumyl peroxide on a poly(lactic acid) (PLA)/Poly (butylene succinate) (PBS)/ functionalised chitosan-based nanobiocomposite for packaging: a reactive extrusion study. ACS Omega 3:13298–13312

    Article  CAS  Google Scholar 

  29. Phua YJ, Chow WS, Mohd Ishak ZA (2011) The hydrolytic effect of moisture and hydrothermal aging on poly(butylene succinate)/organo-montmorillonite nanocomposites. Polym Degrad Stab 96:1194–1203

    Article  CAS  Google Scholar 

  30. Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. BioResources 6:1988–2003

    CAS  Google Scholar 

  31. Kim HS, Lee BH, Lee S et al (2011) Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 104:331–338

    Article  CAS  Google Scholar 

  32. Kim HS, Yang HS, Kim HJ (2015) Biodegradability and Mechanical Properties of agro-flour filled polybutylene succinate bio-composites. J Appl Polym Sci 97:1513–1521

    Article  Google Scholar 

  33. Hongsriphan N, Muangrak W, Soonthornvacharin K, Tulaphol T (2015) Mechanical improvement of poly (butylenes succinate) with polyamide short fibers. Macromol Symp 354:28–34

    Article  CAS  Google Scholar 

  34. Gourhari C, Valapa RB, Pugazhenthi G, Vimal K (2018) Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. IJBM 113:1080–1091

    Google Scholar 

  35. Chuanhui G, Zetian L, Yuetao L, Xinhua Z, Jing W, Yumin W (2017) Thermal, crystallographic, and mechanical properties of poly (butylene succinate)/magnesium hydroxide sulphate hydrate whisker composites modified by in situ polymerization. Ind Eng Chem Res 56:3516–3526

    Article  Google Scholar 

  36. Gourhari C, Arvind G, Pugazhenthi G, Katiyar V (2017) Facile dispersion of exfoliated graphene/PLA nanocomposites via in situ polycondensation with a melt extrusion process and its rheological studies. JAPS. https://doi.org/10.1002/app.46476

    Article  Google Scholar 

  37. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  38. Chuang HK, Han CD (1984) Rheological behaviour of polymer blends. J Appl Polm Sci 29(6):2205–2209

    Article  CAS  Google Scholar 

  39. Han CD, Kim J, Kim JK (1989) Determination of the order-disorder transition temperature of block copolymers. Macromolecules 22(1):383–394

    Article  CAS  Google Scholar 

  40. Melakuu T, Rahul P, Prodyut D (2017) Nanosilk-grafted poly (lactic acid) films: influence of cross-linking on rheology and thermal stability. ACS Omega 2(7071):7084

    Google Scholar 

  41. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I Alternating current characteristics. J Chem Phys 9(4):341–351

    Article  CAS  Google Scholar 

  42. Monika MN, Katiyar V (2019) Generalised kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate) functionalised chitosan based reactive nanobiocomposite. IJBM 141:831–842

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centre of Excellence for Sustainable Polymers (CoE-SusPol) funded by the Department of Chemicals and Petrochemicals, Government of India at the Indian Institute of Technology Guwahati and the Department of Chemical Engineering of the Indian Institute of Technology Guwahati, India for the analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S.K., Chakraborty, G., Kashyap, S.P. et al. Study of the Thermal, Mechanical and Melt Rheological Properties of Rice Straw Filled Poly (Butylene Succinate) Bio-composites Through Reactive Extrusion Process. J Polym Environ 29, 1477–1488 (2021). https://doi.org/10.1007/s10924-020-01973-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01973-8

Keywords

Navigation