Skip to main content
Log in

Rheological, morphological and mechanical properties of flax fiber polypropylene composites: influence of compatibilizers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, the rheological, mechanical and morphological properties of flax fiber polypropylene composites were investigated. The effect of incorporating a polypropylene grafted acrylic acid or a polypropylene grafted maleic anhydride on these properties has been studied as well. According to scanning electron microscopic observations and tensile tests, the addition of a compatibilizer improved the interfacial adhesion between the flax fibers and the polymer matrix. The tensile modulus of composite containing 30 wt% flax fibers was improved by 200 % and the tensile strength improved by 60 % in comparison with the neat PP. Plasticizing effect of the compatibilizers as a result of their lower melt flow index was also shown to decrease the rheological properties of the composites, even though the effect was not pronounced on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arbelaiz A, Fernández B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005a) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36:1637–1644

    Article  Google Scholar 

  • Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005b) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592

    Article  CAS  Google Scholar 

  • Arias A, Heuzey M-C, Huneault MA (2012) Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20:439–452

    Article  Google Scholar 

  • Barbosa SE, Kenny JM (2000) Processing of short-fiber reinforced polypropylene. I. Influence of processing conditions on the morphology of extruded filaments. Polym Eng Sci 40:11–22

    Article  CAS  Google Scholar 

  • Barkakaty BC (1976) Some structural aspects of sisal fibers. J Appl Polym Sci 20:2921–2940

    Article  CAS  Google Scholar 

  • Barkoula NM, Garkhail SK, Peijs T (2009) Effect of compounding and injection molding on the mechanical properties of flax fiber polypropylene composites. J Reinf Plast Compos 29:1366–1385

    Article  Google Scholar 

  • Biagiotti J, Fiori S, Torre L, López-Manchado MA, Kenny JM (2004) Mechanical properties of polypropylene matrix composites reinforced with natural fibers: a statistical approach. Polym Compos 25:26–36

    Article  CAS  Google Scholar 

  • Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press Taylor and Francis Group, pp 37–108

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  CAS  Google Scholar 

  • Charlet K, Béakou A (2011) Mechanical properties of interfaces within a flax bundle—Part I: experimental analysis. Int J Adhes Adhes 31:875–881

    Article  CAS  Google Scholar 

  • El-Sabbagh A, Steuernagel L, Ziegmann G (2009) Processing and modeling of the mechanical behavior of natural fiber thermoplastic composite: flax/polypropylene. Polym Compos 30:510–519

    Article  CAS  Google Scholar 

  • Garkhail S, Heijenrath R, Peijs T (2000) Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 7:351–372

    Article  CAS  Google Scholar 

  • Gauthier R, Joly C, Coupas AC, Gauthier H, Escoubes M (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19:287–300

    Article  CAS  Google Scholar 

  • George J, Klompen E, Peijs T (2001) Thermal degradation of green and upgraded flax fibres. Adv Compos Lett (UK) 10:81–88

    Google Scholar 

  • González-Sánchez C, Fonseca-Valero C, Ochoa-Mendoza A, Garriga-Meco A, Rodríguez-Hurtado E (2011) Rheological behavior of original and recycled cellulose–polyolefin composite materials. Compos A Appl Sci Manuf 42:1075–1083

    Article  Google Scholar 

  • Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292:608–619

    Article  CAS  Google Scholar 

  • Hwang BS, Kim BS, Lee JH, Byun JH, Park JM (2007) Physical parameters and mechanical properties improvement for Jute fiber/polypropylene composites by maleic anhydride coupler. Paper presented at the 16th international conference on composite materials Kyoto, Japan

  • Kalaprasad G, Mathew G, Pavithran C, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. I. untreated fibers. J Appl Polym Sci 89:432–442

    Article  CAS  Google Scholar 

  • Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos A Appl Sci Manuf 35:357–362

    Article  Google Scholar 

  • Keshtkar M, Heuzey MC, Carreau PJ (2009) Rheological behavior of fiber-filled model suspensions: effect of fiber flexibility. J Rheol 53:631–650

    Article  CAS  Google Scholar 

  • Khalid M, Salmiaton A, Chuah T, Ratnam C, Choong ST (2008) Effect of MAPP and TMPTA as compatibilizer on the mechanical properties of cellulose and oil palm fiber empty fruit bunch–polypropylene biocomposites. Compos Interf 15:251–262

    Article  CAS  Google Scholar 

  • Kim JK, Song JH (1997) Rheological properties and fiber orientations of short fiber-reinforced plastics. J Rheol 41:1069–1078

    Article  Google Scholar 

  • Le Moigne N, van den Oever M, Budtova T (2013) Dynamic and capillary shear rheology of natural fiber-reinforced composites. Polym Eng Sci 53:2582–2593

    Article  Google Scholar 

  • Li TQ, Wolcott MP (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45:549–559

    Article  CAS  Google Scholar 

  • Luz SM, Gonçalves AR, Del’Arco AP (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A Appl Sci Manuf 38:1455–1461

    Article  Google Scholar 

  • Malkapuram R, Kumar V, Negi YS (2008) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  Google Scholar 

  • Mingzhu P, Zhang SY, Dingguo Z (2009) Preparation and properties of wheat straw fiber-polypropylene composites. Part II. Investigation of surface treatments on the thermo-mechanical and rheological properties of the composites. J Compos Mater 44:1061–1073

    Article  Google Scholar 

  • Mobuchon C, Carreau PJ, Heuzey M-C, Sepehr M, Ausias G (2005) Shear and extensional properties of short glass fiber reinforced polypropylene. Polym Compos 26:247–264

    Article  CAS  Google Scholar 

  • Nair KCM, Kumar RP, Thomas S, Schit SC, Ramamurthy K (2000) Rheological behavior of short sisal fiber-reinforced polystyrene composites. Compos A Appl Sci Manuf 31:1231–1240

    Article  Google Scholar 

  • Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A 523:32–38

    Article  Google Scholar 

  • Oksman K, Clemons C (1998) Mechanical properties and morphology of impact modified polypropylene-wood flour composites. J Appl Polym Sci 67:1503–1513

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Långström R, Nyström B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853

    Article  CAS  Google Scholar 

  • Paunikallio T, Kasanen J, Suvanto M, Pakkanen TT (2003) Influence of maleated polypropylene on mechanical properties of composite made of viscose fiber and polypropylene. J Appl Polym Sci 87:1895–1900

    Article  CAS  Google Scholar 

  • Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J (2005) Micro- and nano-structure in polypropylene/clay nanocomposites. Polymer 46:11624–11634

    Article  CAS  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Puglia D, Terenzi A, Barbosa SE, Kenny JM (2008) Polypropylene-natural fibre composites. Analysis of fibre structure modification during compounding and its influence on the final properties. Compos Interf 15:111–129

    Article  CAS  Google Scholar 

  • Qiu W, Endo T, Hirotsu T (2006) Interfacial interaction, morphology, and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene. J Appl Polym Sci 102:3830–3841

    Article  CAS  Google Scholar 

  • Rensch HP, Riedl B (1992) Characterization of chemically modified chemithermomechanical pulp by thermal analysis. Part 1. Treatment with anhydrides. Thermochimica Acta 205:39–49

    Article  CAS  Google Scholar 

  • Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Nonnewton Fluid Mech 123:19–32

    Article  CAS  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442

    Article  CAS  Google Scholar 

  • Soleimani M, Tabil L, Panigrahi S, Opoku A (2008) The Effect of fiber pretreatment and compatibilizer on mechanical and physical properties of flax fiber-polypropylene composites. J Polym Environ 16:74–82

    Article  CAS  Google Scholar 

  • Tucker CL III, Advani SG (eds) (1994) Flow and rheology in polymer composites manufacturing. Elsevier Science, New York

    Google Scholar 

  • Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fiber composites. Polym Compos 30:1401–1407

    Article  CAS  Google Scholar 

  • Utracki LA (1986) Flow and flow orientation of composites containing anisometric particles. Polym Compos 7:274–282

    Article  CAS  Google Scholar 

  • Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286:342–349

    Article  Google Scholar 

  • Van de Velde K, Kiekens P (2001) Influence of fibre and matrix modifications on mechanical and physical properties of flax fibre reinforced poly(propylene). Macromol Mater Eng 4:237–242

    Article  Google Scholar 

  • Van de Velde K, Kiekens P (2003) Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Compos Struct 62:443–448

    Article  Google Scholar 

  • Wielage B, Lampke T, Utschick H, Soergel F (2003) Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties. J Mater Process Technol 139:140–146

    Article  CAS  Google Scholar 

  • Wu D, Sun Y, Wu L, Zhang M (2008) Linear viscoelastic properties and crystallization behavior of multi-walled carbon nanotube/polypropylene composites. J Appl Polym Sci 108:1506–1513

    Article  CAS  Google Scholar 

  • Yuan X, Zhang Y, Zhang X (1999) Maleated polypropylene as a coupling agent polypropylene-waste newspaper flour composites. J Appl Polym Sci 77:333–337

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding. They also thank Gilles Ausias from Laboratoire d’Ingénierie des Matériaux de Bretagne (LIMATB) for providing the flax fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Carreau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sojoudiasli, H., Heuzey, MC. & Carreau, P.J. Rheological, morphological and mechanical properties of flax fiber polypropylene composites: influence of compatibilizers. Cellulose 21, 3797–3812 (2014). https://doi.org/10.1007/s10570-014-0375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0375-3

Keywords

Navigation