Skip to main content

Advertisement

Log in

Rheological behavior of highly loaded cellulose nanocrystal/poly(vinyl alcohol) composite suspensions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recent emphasis on the pilot scale production of cellulosic nanomaterials has increased interest in the effective use of these materials as reinforcements for polymer composites. An important, enabling step to realizing the potential of cellulosic nanomaterials in their applications is the materials processing of CNC/polymer composites through multiple routes, i.e. melt, solution, and aqueous processing methods. Therefore, the objective of this research is to characterize the viscoelastic behavior of aqueous nanocomposite suspensions containing cellulose nanocrystals (CNCs) and a water-soluble polymer, poly(vinyl alcohol) (PVA). Specifically, small amplitude oscillatory shear measurements were performed on neat PVA solutions and CNC-loaded PVA suspensions. The experimental results indicated that the methods used in this study were able to produce high-quality nanocomposite suspensions at high CNC loadings, up to 67 wt% with respect to PVA. Additionally, the structure achieved in the nanocomposite suspensions was understood through component attributes and interactions. At CNC loadings near and less than the percolation threshold, a polymer mediated CNC network was present. At loadings well above the percolation threshold, a CNC network was present, indicated by limited molecular weight dependence of the storage modulus. Overall, these results provide increased fundamental understanding of CNC/PVA suspensions that can be leveraged to develop advanced aqueous processing methods for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7:2373–2379. doi:10.1039/c0sm01172j

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J (2014) Effect of storage conditions on cellulose nanocrystal stability. Tappi J 13:53–61

    CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  • Bolto B, Tran T, Hoang M, Xie ZL (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981. doi:10.1016/j.progpolymsci.2009.05.003

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58. doi:10.1515/hf.2006.010

    Article  CAS  Google Scholar 

  • Chang CY, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels Macromol. Chem Phys 209:1266–1273. doi:10.1002/macp.200800161

    CAS  Google Scholar 

  • Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28:963–1014. doi:10.1016/s0079-6700(02)00149-1

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13:3029–3034. doi:10.1021/la9610462

    Article  CAS  Google Scholar 

  • Favier V, Dendievel R, Canova G, Cavaille JY, Gilormini P (1997) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565. doi:10.1016/S1359-6454(96)00264-9

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230. doi:10.1002/app.38524

    Article  CAS  Google Scholar 

  • Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512

    CAS  Google Scholar 

  • Gao HW, Yang RJ, He JY, Yang L (2010) Rheological behaviors of PVA/H2O solutions of high-polymer. J Appl Polym Sci 116:1459–1466. doi:10.1002/app.31677

    CAS  Google Scholar 

  • Holloway JL, Lowman AM, Palmese GR (2013) The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9:826–833. doi:10.1039/c2sm26763b

    Article  CAS  Google Scholar 

  • Hossain KMZ, Jasmani L, Ahmed I, Parsons AJ, Scotchford CA, Thielemans W, Rudd CD (2012) High cellulose nanowhisker content composites through cellosize bonding. Soft Matter 8:12099–12110. doi:10.1039/c2sm26912k

    Article  Google Scholar 

  • Huang CC, Lou CW, Lu CT, Huang SH, Chao CY, Lin JH, Lee JH (2010) Evaluation of the preparation and biocompatibility of poly(vinyl alcohol)(PVA)/chitosan composite electrospun membranes. Multi-functional materials and structures III, Pts 1 and 2, vol 123–125. Advanced materials research. Trans Tech Publications Ltd, Stafa-Zurich, pp 975–978. doi:10.4028/www.scientific.net/AMR.123-125.975

    Google Scholar 

  • Jiang S, Liu S, Feng WH (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233. doi:10.1016/j.jmbbm.2011.04.005

    Article  CAS  Google Scholar 

  • Khalil H, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. doi:10.1016/j.carbpol.2011.08.078

    Article  Google Scholar 

  • Kim SS, Seo IS, Yeum JH, Ji BC, Kim JH, Kwak JW, Yoon WS, Noh SK, Lyoo WS (2004) Rheological properties of water solutions of syndiotactic poly(vinyl alcohol) of different molecular weights. J Appl Polym Sci 92:1426–1431. doi:10.1002/app.13685

    Article  CAS  Google Scholar 

  • Kjøniksen A-L, Nyström B (1996) Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules 29:5215–5222. doi:10.1021/ma960094q

    Article  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488. doi:10.1021/la903111j

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A-Appl S 39:738–746. doi:10.1016/j.compositesa.2008.02.003

    Article  Google Scholar 

  • Lyoo WS, Yeum JH, Kwon OW, Shin DS, Han SS, Kim BC, Jeon HY, Noh SK (2006) Rheological properties of high molecular weight (HMW) syndiotactic poly(vinyl alcohol) (PVA)/HMW atactic PVA blend solutions. J Appl Polym Sci 102:3934–3939. doi:10.1002/app.24223

    Article  CAS  Google Scholar 

  • Maiti J, Kakati N, Lee SH, Jee SH, Viswanathan B, Yoon YS (2012) Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? J Power Sources 216:48–66. doi:10.1016/j.jpowsour.2012.05.057

    Article  CAS  Google Scholar 

  • Mihranyan A (2013) Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20:1369–1376. doi:10.1007/s10570-013-9882-x

    Article  CAS  Google Scholar 

  • Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B 79B:245–253. doi:10.1002/jbm.b.30535

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Yassar RS (2012a) Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes. Nanotechnology. doi:10.1088/0957-4484/23/8/085706

    Google Scholar 

  • Pakzad A, Simonsen J, Yassar RS (2012b) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Compos Sci Technol 72:314–319. doi:10.1016/j.compscitech.2011.11.020

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681. doi:10.1021/bm901254n

    Article  CAS  Google Scholar 

  • Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:1–10. doi:10.1088/0957-0233/22/2/024005

    Google Scholar 

  • Pritchard JG (1970) Poly(vinyl alcohol): basic properties and uses. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Qiu KY, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594. doi:10.1016/j.compscitech.2012.06.010

    Article  CAS  Google Scholar 

  • Ram S, Mandal TK (2004) Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem Phys 303:121–128. doi:10.1016/j.chemphys.2004.05.006

    Article  CAS  Google Scholar 

  • Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16

    CAS  Google Scholar 

  • Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J For 2:32–41

    Google Scholar 

  • Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516. doi:10.1021/ma048418v

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. doi:10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  • Scholten PM, Ng KW, Joh K, Serino LP, Warren RF, Torzilli PA, Maher SA (2011) A semi-degradable composite scaffold for articular cartilage defects. J Biomed Mater Res A 97A:8–15. doi:10.1002/jbm.a.33005

    Article  CAS  Google Scholar 

  • Silverio HA, Neto WPF, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. J Nanomater. doi:10.1155/2013/289641

    Google Scholar 

  • Song SI, Kim BC (2004) Characteristic rheological features of PVA solutions in water-containing solvents with different hydration states. Polymer 45:2381–2386. doi:10.1016/j.polymer.2004.01.057

    Article  CAS  Google Scholar 

  • Tang CY, Liu HQ (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos Part A Appl S 39:1638–1643. doi:10.1016/j.compositesa.2008.07.005

    Article  Google Scholar 

  • Tanpichai S, Sampson WW, Eichhorn SJ (2014) Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites. Compos Part A Appl S 65:186–191. doi:10.1016/j.compositesa.2014.06.014

    Article  CAS  Google Scholar 

  • te Nijenhuis K (1997) Thermoreversible networks: viscoelastic properties and structure of gels. Advances in polymer science, vol 130. Springer, Berlin

    Google Scholar 

  • Uddin AJ, Araki J, Gotoh Y (2011a) Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Compos Part A Appl S 42:741–747. doi:10.1016/j.compositesa.2011.02.012

    Article  Google Scholar 

  • Uddin AJ, Araki J, Gotoh Y (2011b) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624. doi:10.1021/bm101280f

    Article  CAS  Google Scholar 

  • Wang YH, Hsieh YL (2010) Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride. J Appl Polym Sci 116:3249–3255. doi:10.1002/app.31750

    Article  CAS  Google Scholar 

  • Wang YX, Chang CY, Zhang LN (2010) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges. Macromol Mater Eng 295:137–145. doi:10.1002/mame.200900212

    Article  CAS  Google Scholar 

  • Wu XW, Moon RJ, Martini A (2013) Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20:43–55. doi:10.1007/s10570-012-9823-0

    Article  CAS  Google Scholar 

  • Xu SH, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54:6589–6598. doi:10.1016/j.polymer.2013.10.011

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207. doi:10.1021/am4001997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Renewable Bioproducts Institute for providing a Paper Science and Engineering Fellowship for C.E.M as well as support for the purchase of some of the materials and supplies used in this work. The authors also thank the USDA Forest Service Forest Products Laboratory for providing the CNCs used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisha L. Shofner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meree, C.E., Schueneman, G.T., Meredith, J.C. et al. Rheological behavior of highly loaded cellulose nanocrystal/poly(vinyl alcohol) composite suspensions. Cellulose 23, 3001–3012 (2016). https://doi.org/10.1007/s10570-016-1003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1003-1

Keywords

Navigation