Skip to main content
Log in

Effect of aging on the microstructure and physical properties of Poly(vinyl alcohol) hydrogel

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Physical aging is a fundamental phenomenon for any polymeric material and is essential to understand correctly, especially to foretell the long-term behavior of the material. Change in properties with time has a great influence on its applicability and usability. Polyvinyl alcohol (PVA), one of the most widely used polymers especially in biomedical industries, due to its biocompatibility and biodegradability nature. Moreover, PVA hydrogel is widely used in tissue engineering applications because of its high porosity and water retention capacity. The influence of aging (viz., real-time aging) on the physical properties of PVA hydrogel is poorly understood. Herein, we present an aging (viz., real-time) study of PVA hydrogel over a long period, from 3-days to 300-days. The detailed morphological analysis based on FESEM reveals a significant change in microstructure, with coarsening of pores. The rheological study shows that the material becomes more elastic with aging. After 300 days of aging the PVA hydrogel becomes thermally more stable with a shift in the transition temperature based on DSC/TGA analysis. The change in macroscopic properties is linked with the change in microscopic structure, which is governed by the extensive hydrogen bonding (both intra- and inter-molecular) between hydroxyl groups, as is evident from FTIR studies. This extensive hydrogen bonding leads to the formation of a crosslinked three-dimensional network structure, which evolves with the aging time. The 300 days aged hydrogel microstructure resembles to the porcine liver structure, indicating that it may be useful as a scaffold for tissue engineering research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merrick MM, Sujanani R, Freeman BD (2020) Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging. Polymer (Guildf) 211:123176. https://doi.org/10.1016/j.polymer.2020.123176

    Article  CAS  Google Scholar 

  2. Struik LCE (1977) Physical aging in plastics and other glassy materials. Polym Eng Sci 17:165–173. https://doi.org/10.1002/pen.760170305

    Article  CAS  Google Scholar 

  3. Hutchinson J (1995) Physical aging of polymers. Prog Polym Sci 20:703–760. https://doi.org/10.1007/978-94-007-6064-6_15

    Article  CAS  Google Scholar 

  4. Hecksher T, Olsen NB, Niss K, Dyre JC (2010) Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J Chem Phys 133:174514. https://doi.org/10.1063/1.3487646

    Article  CAS  PubMed  Google Scholar 

  5. Bin-Dahman OA, Jose J, Al-Harthi MA (2017) Effect of natural weather aging on the properties of poly(vinyl alcohol)/starch/graphene nanocomposite. Starch/Staerke 69:1600005. https://doi.org/10.1002/star.201600005

    Article  CAS  Google Scholar 

  6. Law A, Simon L, Lee‐Sullivan P (2008) Effects of thermal aging on isotactic polypropylene crystallinity. Polym Eng Sci Sci 48:627–633. https://doi.org/10.1002/pen.20987

  7. Stolte I, Androsch R, Di Lorenzo ML, Schick C (2013) Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization. J Phys Chem B 117:15196–15203. https://doi.org/10.1021/jp4093404

    Article  CAS  PubMed  Google Scholar 

  8. Zhang T, Hu J, Duan Y et al (2011) Physical aging enhanced mesomorphic structure in melt-quenched poly(l -lactic acid). J Phys Chem B 115:13835–13841. https://doi.org/10.1021/jp2087863

    Article  CAS  PubMed  Google Scholar 

  9. Hu W, Liu W, Ren X (2019) The study on aging behaviors and critical stress of cross-linked high-density polyethylene during stress and photo-oxidative aging. J Polym Res 26:114. https://doi.org/10.1007/s10965-019-1773-x

    Article  CAS  Google Scholar 

  10. Yu L, Yan X, Fortin G (2018) Effects of weathering aging on mechanical and thermal properties of injection molded glass fiber reinforced polypropylene composites. J Polym Res 25:247. https://doi.org/10.1007/s10965-018-1642-z

    Article  CAS  Google Scholar 

  11. Holloway JL, Lowman AM, Palmese GR (2013) Aging behavior of PVA hydrogels for soft tissue applications after in vitro swelling using osmotic pressure solutions. Acta Biomater 9:5013–5021. https://doi.org/10.1016/j.actbio.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  12. Volynskii AL, Efimov AV, Bakeev NF (2007) Structural aspects of physical aging of polymer glasses. Polym Sci - Ser C 49:301–320. https://doi.org/10.1134/S1811238207040017

    Article  Google Scholar 

  13. Schwarz I, Stranz M, Bonnet M, Petermann J (2001) Changes of mechanical properties in cold-crystallized syndiotactic polypropylene during aging. Colloid Polym Sci 279:506–512. https://doi.org/10.1007/s003960100488

    Article  CAS  Google Scholar 

  14. Ramli M, Tabassi AA, Hoe KW (2013) Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions. Compos Part B Eng 55:221–233. https://doi.org/10.1016/j.compositesb.2013.06.022

    Article  CAS  Google Scholar 

  15. Elkebir Y, Mallarino S, Trinh D, Touzain S (2020) Effect of physical ageing onto the water uptake in epoxy coatings. Electrochim Acta 337:135766. https://doi.org/10.1016/j.electacta.2020.135766

    Article  CAS  Google Scholar 

  16. Struik LCE (1976) Physical Aging in Amorphous Glassy Polymers. Ann N Y Acad Sci 279:78–85. https://doi.org/10.1111/j.1749-6632.1976.tb39695.x

    Article  CAS  Google Scholar 

  17. White RP, Lipson JEG (2016) Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 49:3987–4007

    Article  CAS  Google Scholar 

  18. Robertson RE, Simha R, Curro JG (1984) Free Volume and the Kinetics of Aging of Polymer Glasses. Macromolecules 17:911–919. https://doi.org/10.1021/ma00134a064

    Article  CAS  Google Scholar 

  19. Chow TS (1984) Kinetics of Free Volume and Physical Aging in Polymer Glasses. Macromolecules 17:2336–2340. https://doi.org/10.1021/ma00141a024

    Article  CAS  Google Scholar 

  20. Cangialosi D, Schut H, Van Veen A, Picken SJ (2003) Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate. Macromolecules 36:142–147. https://doi.org/10.1021/ma021214z

    Article  CAS  Google Scholar 

  21. Wang B, Gong W, Liu WH et al (2003) Influence of physical aging and side group on the free volume of epoxy resins probed by positron. Polymer (Guildf) 44:4047–4052. https://doi.org/10.1016/S0032-3861(03)00306-9

    Article  CAS  Google Scholar 

  22. Doolittle AK (1951) Studies in newtonian flow. II. the dependence of the viscosity of liquids on free-space. J Appl Phys 22:1471–1475. https://doi.org/10.1063/1.1699894

    Article  CAS  Google Scholar 

  23. Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  24. Peppas NA, Berner RE (1980) Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1:158–162. https://doi.org/10.1016/0142-9612(80)90039-3

    Article  CAS  PubMed  Google Scholar 

  25. Curley C, Hayes JC (2014) An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. J Mech Behav Biomed Mater 40:13–22. https://doi.org/10.1016/j.jmbbm.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  26. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy ERS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem 8:1–14. https://doi.org/10.1016/j.arabjc.2014.07.005

    Article  CAS  Google Scholar 

  27. Noori S, Kokabi M, Hassan ZM (2015) Nanoclay Enhanced the Mechanical Properties of Poly(Vinyl Alcohol) /Chitosan /Montmorillonite Nanocomposite Hydrogel as Wound Dressing. Procedia Mater Sci 11:152–156. https://doi.org/10.1016/j.mspro.2015.11.023

    Article  CAS  Google Scholar 

  28. Hayes JC, Kennedy JE (2016) An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Mater Sci Eng C 59:894–900. https://doi.org/10.1016/j.msec.2015.10.052

    Article  CAS  Google Scholar 

  29. Orienti I, Treré R, Zecchi V (2001) Hydrogels formed by cross-linked polyvinylalcohol as colon-specific drug delivery systems. Drug Dev Ind Pharm 27:877–884. https://doi.org/10.1081/DDC-100107253

    Article  CAS  PubMed  Google Scholar 

  30. Zu Y, Zhang Y, Zhao X et al (2012) Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87. https://doi.org/10.1016/j.ijbiomac.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  31. Bercea M, Morariu S, Rusu D (2013) In situ gelation of aqueous solutions of entangled poly(vinyl alcohol). Soft Matter 9:1244–1253. https://doi.org/10.1039/c2sm26094h

    Article  CAS  Google Scholar 

  32. Gupta S, Webster TJ, Sinha A (2011) Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J Mater Sci Mater Med 22:1763–1772. https://doi.org/10.1007/s10856-011-4343-2

    Article  CAS  PubMed  Google Scholar 

  33. Hassan CM, Peppas NA (2000) Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In: Advances in Polymer Science. pp 37–65

  34. Li JK, Wang N, Wu XS (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release 56:117–126. https://doi.org/10.1016/S0168-3659(98)00089-3

    Article  CAS  PubMed  Google Scholar 

  35. Holloway JL, Lowman AM, Palmese GR (2013) The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9:826–833. https://doi.org/10.1039/c2sm26763b

    Article  CAS  Google Scholar 

  36. Ariga O, Takagi H, Nishizawa H, Sano Y (1987) Immobilization of microorganisms with PVA hardened by iterative freezing and thawing. J Ferment Technol 65:651–658. https://doi.org/10.1016/0385-6380(87)90007-0

    Article  CAS  Google Scholar 

  37. Gao H-W, Yang R-J, He J-Y, Yang L (2010) Rheological behaviors of PVA/H2O solutions of high-polymer concentration. J Appl Polym Sci 116:1459–1466. https://doi.org/10.1002/app.31677

    Article  CAS  Google Scholar 

  38. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233. https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  39. Draper ER, McDonald TO, Adams DJ (2015) A low molecular weight hydrogel with unusual gel aging. Chem Commun 51:6595–6597. https://doi.org/10.1039/c5cc01334h

    Article  CAS  Google Scholar 

  40. Pan P, Zhu B, Inoue Y (2007) Enthalpy Relaxation and Embrittlement of Poly( l -lactide) during Physical Aging. Macromolecules 40:9664–9671. https://doi.org/10.1021/ma071737c

    Article  CAS  Google Scholar 

  41. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer (Guildf) 45:7193–7202. https://doi.org/10.1016/j.polymer.2004.08.036

    Article  CAS  Google Scholar 

  42. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  43. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2008) Introduction to Spectroscopy. Brooks/Cole Cengage Learning, Bellingham

  44. Bercea M, Bibire EL, Morariu S et al (2015) pH influence on rheological and structural properties of chitosan/poly(vinyl alcohol)/layered double hydroxide composites. Eur Polym J 70:147–156. https://doi.org/10.1016/j.eurpolymj.2015.07.013

    Article  CAS  Google Scholar 

  45. Yang J, Han CR, Duan JF et al (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207. https://doi.org/10.1021/am4001997

    Article  CAS  PubMed  Google Scholar 

  46. Yang N, Hutter JL, de Bruyn JR (2013) Rheology and structure of poly(vinyl alcohol)-poly(ethylene glycol) blends during aging. J Rheol (N Y N Y) 57:1739–1759. https://doi.org/10.1122/1.4824428

    Article  CAS  Google Scholar 

  47. Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromol 8:3823–3829. https://doi.org/10.1021/bm700762w

    Article  CAS  Google Scholar 

  48. Lee EJ, Dan KS, Kim BC (2006) Rheological Characterization of Shear-Induced Structural Formation in the Solutions of Poly ( vinyl alcohol ) in Dimethyl Sulfoxide. J Appl Polym Sci 101:465–471. https://doi.org/10.1002/app.23256

    Article  CAS  Google Scholar 

  49. Grattoni CA, Al-sharji HH, Yang C et al (2001) Rheology and Permeability of Crosslinked Polyacrylamide Gel. J Colloid Interface Sci 240:601–607. https://doi.org/10.1006/jcis.2001.7633

    Article  CAS  PubMed  Google Scholar 

  50. Aamer KA, Sardinha H, Bhatia SR, Tew GN (2004) Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093. https://doi.org/10.1016/S0142-9612(03)00632-X

    Article  CAS  PubMed  Google Scholar 

  51. Tang YF, Du YM, Hu XW et al (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67:491–499. https://doi.org/10.1016/j.carbpol.2006.06.015

    Article  CAS  Google Scholar 

  52. Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39:3528–3540. https://doi.org/10.1039/b919449p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozer BH, Bell AE, Grandison AS, Robinson RK (1998) Rheological properties of concentrated yoghurt (labneh). J Texture Stud 29:67–79. https://doi.org/10.1111/j.1745-4603.1998.tb00154.x

    Article  Google Scholar 

  54. Teodorescu M, Morariu S, Bercea M, SǍcǍrescu L, (2016) Viscoelastic and structural properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels. RSC Adv 6:39718–39727. https://doi.org/10.1039/c6ra04319d

    Article  CAS  Google Scholar 

  55. Karami M, Ehsani MR, Mousavi SM et al (2009) Changes in the rheological properties of Iranian UF-Feta cheese during ripening. Food Chem 112:539–544. https://doi.org/10.1016/j.foodchem.2008.06.003

    Article  CAS  Google Scholar 

  56. Qi X, Hu X, Wei W et al (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 118:60–69. https://doi.org/10.1016/j.carbpol.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  57. Reena KA, Mahto V, Choubey AK (2020) Synthesis and characterization of cross-linked hydrogels using polyvinyl alcohol and polyvinyl pyrrolidone and their blend for water shut-off treatments. J Mol Liq 301:112472. https://doi.org/10.1016/j.molliq.2020.112472

    Article  CAS  Google Scholar 

  58. Peng M, Xiao G, Tang X, Zhou Y (2014) Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47:8411–8419. https://doi.org/10.1021/ma501590x

    Article  CAS  Google Scholar 

  59. Chen YN, Peng L, Liu T et al (2016) Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. ACS Appl Mater Interfaces 8:27199–27206. https://doi.org/10.1021/acsami.6b08374

    Article  CAS  PubMed  Google Scholar 

  60. Abdullah OG, Aziz SB, Rasheed MA (2016) Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys 6:1103–1108. https://doi.org/10.1016/j.rinp.2016.11.050

    Article  Google Scholar 

  61. Zhao J, Wang J, Li C, Fan Q (2002) Study of the amorphous phase in semicrystalline poly(ethylene terephthalate) via physical aging. Macromolecules 35:3097–3103. https://doi.org/10.1021/ma011333z

    Article  CAS  Google Scholar 

  62. Liu Y, Geever LM, Kennedy JE et al (2010) Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J Mech Behav Biomed Mater 3:203–209. https://doi.org/10.1016/j.jmbbm.2009.07.001

    Article  PubMed  Google Scholar 

  63. Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer (Guildf) 42:4271–4280. https://doi.org/10.1016/S0032-3861(00)00768-0

    Article  CAS  Google Scholar 

  64. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479. https://doi.org/10.1021/ma9907587

    Article  CAS  Google Scholar 

  65. Kenney JF, Holland VF (1966) Crystallization and dissolution temperatures of poly(vinyl alcohol) crystal lamellae. J Polym Sci Part A1 4:699–706. https://doi.org/10.1002/pol.1966.150040322

  66. Uddin AJ, Araki J, Gotoh Y (2011) Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Compos Part A Appl Sci Manuf 42:741–747. https://doi.org/10.1016/j.compositesa.2011.02.012

    Article  CAS  Google Scholar 

  67. de Mota RC, AG, da Silva EO, de Menezes LR, (2018) Effect of the Addiction of Metal Oxide Nanoparticles on the Physical, Chemical and Thermal Properties of PVA Based Nanocomposites. Mater Sci Appl 09:473–488. https://doi.org/10.4236/msa.2018.95033

    Article  CAS  Google Scholar 

  68. Othman N, Azahari NA, Ismail H (2011) Thermal Properties of Polyvinyl Alcohol (PVOH)/Corn Starch Blend Film. Malaysian Polym J 6:147–154

    Google Scholar 

  69. Hong X, Zou L, Zhao J et al (2018) Dry-wet spinning of PVA fiber with high strength and high Young ’ s modulus. IOP Conf Ser Mater Sci Eng 439:042011. https://doi.org/10.1088/1757-899X/439/4/042011

    Article  Google Scholar 

  70. Dong W, Wang Y, Huang C et al (2014) Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin. J Therm Anal Calorim 115:1661–1668. https://doi.org/10.1007/s10973-013-3419-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Ministry of Electronics and Information Technology (No. 5(9)/2012-NANO (Vol. II)), and the Department of Science and Technology (No. SR/FST/ETII-028/2010 and EMR/2017/003610), Government of India, for funding support. We highly acknowledge the Centre for Nanotechnology, Department of Biosciences and Bioengineering, Department of Chemical engineering and CIF, IIT Guwahati, for providing characteristics measurements and characterizations facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dasmahapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 640 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Dasmahapatra, A.K. Effect of aging on the microstructure and physical properties of Poly(vinyl alcohol) hydrogel. J Polym Res 28, 269 (2021). https://doi.org/10.1007/s10965-021-02624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02624-9

Keywords

Navigation