Skip to main content
Log in

Finite Element Discretizations of a Convective Brinkman–Forchheimer Model Under Singular Forcing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In two-dimensional bounded Lipschitz domains, we analyze a convective Brinkman–Forchheimer problem on the weighted spaces \({{\textbf {H}}}_0^1(\omega ,\varOmega ) \times L^2(\omega ,\varOmega )/{\mathbb {R}}\), where \(\omega \) belongs to the Muckenhoupt class \(A_2\). Under a suitable smallness assumption, we prove the existence and uniqueness of a solution. We propose a finite element method and obtain a quasi-best approximation result in the energy norm à la Céa under the assumption that \(\varOmega \) is convex. We also develop an a posteriori error estimator and study its reliability and efficiency properties. Finally, we develop an adaptive method that yields optimal experimental convergence rates for the numerical examples we perform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Acosta, G., Durán, R.G.: Divergence Operator and Related Inequalities. Springer Briefs in Mathematics. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6985-2

    Book  Google Scholar 

  2. Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM Math. Model. Numer. Anal. 48(6), 1557–1581 (2014). https://doi.org/10.1051/m2an/2014010

    Article  MathSciNet  Google Scholar 

  3. Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143(1), 119–137 (2014). https://doi.org/10.1007/s10474-014-0389-1

    Article  MathSciNet  Google Scholar 

  4. Allendes, A., Campaña, G., Fuica, F., Otárola, E.: Darcy’s problem coupled with the heat equation under singular forcing: analysis and discretization. IMA J. Numer. Anal. (2024). https://doi.org/10.1093/imanum/drad094

    Article  Google Scholar 

  5. Allendes, A., Campaña, G., Otárola, E.: Numerical discretization of a Darcy–Forchheimer problem coupled with a singular heat equation. SIAM J. Sci. Comput. 45(5), A2755–A2780 (2023). https://doi.org/10.1137/22M1536340

    Article  MathSciNet  Google Scholar 

  6. Allendes, A., Otárola, E., Salgado, A.J.: A posteriori error estimates for the Stokes problem with singular sources. Comput. Methods Appl. Mech. Eng. 345, 1007–1032 (2019). https://doi.org/10.1016/j.cma.2018.11.004

    Article  MathSciNet  Google Scholar 

  7. Allendes, A., Otárola, E., Salgado, A.J.: A posteriori error estimates for the stationary Navier–Stokes equations with Dirac measures. SIAM J. Sci. Comput. 42(3), A1860–A1884 (2020). https://doi.org/10.1137/19M1292436

    Article  MathSciNet  Google Scholar 

  8. Allendes, A., Otárola, E., Salgado, A.J.: The stationary Boussinesq problem under singular forcing. Math. Models Methods Appl. Sci. 31(4), 789–827 (2021). https://doi.org/10.1142/S0218202521500196

    Article  MathSciNet  Google Scholar 

  9. Almonacid, J.A., Díaz, H.S., Gatica, G.N., Márquez, A.: A fully mixed finite element method for the coupling of the Stokes and Darcy–Forchheimer problems. IMA J. Numer. Anal. 40(2), 1454–1502 (2020). https://doi.org/10.1093/imanum/dry099

    Article  MathSciNet  Google Scholar 

  10. Amestoy, P., Duff, I., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501–520 (2000). https://doi.org/10.1016/S0045-7825(99)00242-X

    Article  Google Scholar 

  11. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/S0895479899358194. ((electronic))

    Article  MathSciNet  Google Scholar 

  12. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware Inc, Clifton Park (2015)

    Google Scholar 

  13. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  14. Bulíček, M., Burczak, J., Schwarzacher, S.: A unified theory for some non-Newtonian fluids under singular forcing. SIAM J. Math. Anal. 48(6), 4241–4267 (2016)

    Article  MathSciNet  Google Scholar 

  15. Casas, E., Kunisch, K.: Optimal control of the two-dimensional stationary Navier–Stokes equations with measure valued controls. SIAM J. Control Optim. 57(2), 1328–1354 (2019). https://doi.org/10.1137/18M1185582

    Article  MathSciNet  Google Scholar 

  16. Caucao, S., Discacciati, M., Gatica, G.N., Oyarzúa, R.: A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM Math. Model. Numer. Anal. 54(5), 1689–1723 (2020). https://doi.org/10.1051/m2an/2020009

    Article  MathSciNet  Google Scholar 

  17. Caucao, S., Esparza, J.: An augmented mixed FEM for the convective Brinkman–Forchheimer problem: a priori and a posteriori error analysis. J. Comput. Appl. Math. 438, 115517 (2024). https://doi.org/10.1016/j.cam.2023.115517

    Article  MathSciNet  Google Scholar 

  18. Caucao, S., Gatica, G.N., Gatica, L.F.: A Banach spaces-based mixed finite element method for the stationary convective Brinkman–Forchheimer problem. Calcolo 60(4), 51 (2023). https://doi.org/10.1007/s10092-023-00544-2

    Article  MathSciNet  Google Scholar 

  19. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  20. Cocquet, P.H., Rakotobe, M., Ramalingom, D., Bastide, A.: Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions. J. Comput. Appl. Math. 381, 113008 (2021). https://doi.org/10.1016/j.cam.2020.113008

    Article  MathSciNet  Google Scholar 

  21. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, vol 215. Birkhäuser/Springer Basel AG, Basel (2011). https://doi.org/10.1007/978-3-0348-0072-3

  22. Duoandikoetxea, J.: Fourier Analysis, Graduate Studies in Mathematics, vol 29. American Mathematical Society, Providence, RI (2001). https://doi.org/10.1090/gsm/029. Translated and revised from the 1995 Spanish original by David Cruz-Uribe

  23. Durán, R.G., López García, F.: Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math. 35(2), 421–438 (2010). https://doi.org/10.5186/aasfm.2010.3527

    Article  MathSciNet  Google Scholar 

  24. Durán, R.G., Otárola, E., Salgado, A.J.: Stability of the Stokes projection on weighted spaces and applications. Math. Comput. 89(324), 1581–1603 (2020). https://doi.org/10.1090/mcom/3509

    Article  MathSciNet  Google Scholar 

  25. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  26. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982). https://doi.org/10.1080/03605308208820218

    Article  MathSciNet  Google Scholar 

  27. Fairag, F.A., Audu, J.D.: Two-level Galerkin mixed finite element method for Darcy–Forchheimer model in porous media. SIAM J. Numer. Anal. 58(1), 234–253 (2020). https://doi.org/10.1137/17M1158161

    Article  MathSciNet  Google Scholar 

  28. Farwig, R., Sohr, H.: Weighted \(L^q\)-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49(2), 251–288 (1997). https://doi.org/10.2969/jmsj/04920251

    Article  MathSciNet  Google Scholar 

  29. Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 45, 1782–1788 (1901)

    Google Scholar 

  30. Fuica, F., Lepe, F., Otárola, E., Quero, D.: An optimal control problem for the Navier–Stokes equations with point sources. J. Optim. Theory Appl. 196(2), 590–616 (2023). https://doi.org/10.1007/s10957-022-02148-2

    Article  MathSciNet  Google Scholar 

  31. Fuica, F., Otárola, E., Quero, D.: Error estimates for optimal control problems involving the Stokes system and Dirac measures. Appl. Math. Optim. 84(2), 1717–1750 (2021). https://doi.org/10.1007/s00245-020-09693-0

    Article  MathSciNet  Google Scholar 

  32. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)

    Book  Google Scholar 

  33. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy–Forchheimer model. Numer. Math. 110(2), 161–198 (2008). https://doi.org/10.1007/s00211-008-0157-7

    Article  MathSciNet  Google Scholar 

  34. Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361(7), 3829–3850 (2009). https://doi.org/10.1090/S0002-9947-09-04615-7

    Article  MathSciNet  Google Scholar 

  35. Guo, Z., Zhao, T.: A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transf. Part B 47(2), 157–177 (2005)

    Article  Google Scholar 

  36. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36(1), 111–138 (2011). https://doi.org/10.5186/aasfm.2011.3607

    Article  MathSciNet  Google Scholar 

  37. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola, NY (2006). Unabridged republication of the 1993 original

  38. Joseph, D.D., Nield, D.A., Papanicolaou, G.: Nonlinear equation governing flow in a saturated porous medium. Water Resour. Res. 18(4), 1049–1052 (1982). https://doi.org/10.1029/WR018i004p01049

    Article  Google Scholar 

  39. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence, RI (1997). https://doi.org/10.1090/surv/052

  40. Lacouture, L.: A numerical method to solve the stokes problem with a punctual force in source term. C. R. Mécanique 343(3), 187–191 (2015). https://doi.org/10.1016/j.crme.2014.09.008

    Article  Google Scholar 

  41. Liu, D., Li, K.: Mixed finite element for two-dimensional incompressible convective Brinkman–Forchheimer equations. Appl. Math. Mech. (Engl. Ed.) 40(6), 889–910 (2019). https://doi.org/10.1007/s10483-019-2487-9

    Article  MathSciNet  Google Scholar 

  42. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972). https://doi.org/10.2307/1995882

    Article  MathSciNet  Google Scholar 

  43. Nochetto, R.H., Otárola, E., Salgado, A.J.: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132(1), 85–130 (2016). https://doi.org/10.1007/s00211-015-0709-6

    Article  MathSciNet  Google Scholar 

  44. Otárola, E., Salgado, A.J.: The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing. J. Math. Anal. Appl. 471(1–2), 599–612 (2019). https://doi.org/10.1016/j.jmaa.2018.10.094

    Article  MathSciNet  Google Scholar 

  45. Otárola, E., Salgado, A.J.: A weighted setting for the stationary Navier Stokes equations under singular forcing. Appl. Math. Lett. 99, 105933 (2020). https://doi.org/10.1016/j.aml.2019.06.004

    Article  MathSciNet  Google Scholar 

  46. Otárola, E., Salgado, A.J.: On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra. Numer. Math. 151(1), 185–218 (2022). https://doi.org/10.1007/s00211-022-01272-5

    Article  MathSciNet  Google Scholar 

  47. Pan, H., Rui, H.: Mixed element method for two-dimensional Darcy–Forchheimer model. J. Sci. Comput. 52(3), 563–587 (2012). https://doi.org/10.1007/s10915-011-9558-3

    Article  MathSciNet  Google Scholar 

  48. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy–Forchheimer model. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012). https://doi.org/10.1137/110858239

    Article  MathSciNet  Google Scholar 

  49. Russo, A., Starita, G.: On the existence of steady-state solutions to the Navier–Stokes system for large fluxes. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(1), 171–180 (2008)

    MathSciNet  Google Scholar 

  50. Sayah, T.: A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem. Comput. Appl. Math. 40(7), 1–38 (2021). https://doi.org/10.1007/s40314-021-01647-8

    Article  MathSciNet  Google Scholar 

  51. Schumacher, K.: Solutions to the equation \({\rm div}\,u=f\) in weighted Sobolev spaces. In: Parabolic and Navier–Stokes Equations. Part 2, Banach Center Publ., vol. 81, pp. 433–440. Polish Acad. Sci. Inst. Math., Warsaw (2008). https://doi.org/10.4064/bc81-0-26

  52. Schumacher, K.: The stationary Navier–Stokes equations in weighted Bessel-potential spaces. J. Math. Soc. Japan 61(1), 1–38 (2009)

    Article  MathSciNet  Google Scholar 

  53. Shenoy, A.: Non-Newtonian Fluid Heat Transfer in Porous Media, pp. 101–190. Elsevier, Amsterdam (1994). https://doi.org/10.1016/S0065-2717(08)70233-8

    Book  Google Scholar 

  54. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123. Academic Press Inc, Orlando (1986)

    Google Scholar 

  55. Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)

  56. Vafai, K., Kim, S.: On the limitations of the Brinkman–Forchheimer-extended Darcy equation. Int. J. Heat Fluid Flow 16(1), 11–15 (1995). https://doi.org/10.1016/0142-727X(94)00002-T

    Article  Google Scholar 

  57. Vafai, K., Tien, C.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981). https://doi.org/10.1016/0017-9310(81)90027-2

    Article  Google Scholar 

  58. Varsakelis, C., Papalexandris, M.V.: On the well-posedness of the Darcy–Brinkman–Forchheimer equations for coupled porous media-clear fluid flow. Nonlinearity 30(4), 1449–1464 (2017). https://doi.org/10.1088/1361-6544/aa5ecf

    Article  MathSciNet  Google Scholar 

  59. Zhao, C., You, Y.: Approximation of the incompressible convective Brinkman–Forchheimer equations. J. Evol. Equ. 12(4), 767–788 (2012). https://doi.org/10.1007/s00028-012-0153-3

    Article  MathSciNet  Google Scholar 

Download references

Funding

AA is partially supported by ANID through FONDECYT project 1210729. GC is partially supported by ANID–Subdirección de Capital Humano/Doctorado Nacional/2020-21200920. EO is partially supported by ANID through FONDECYT project 1220156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Otárola.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allendes, A., Campaña, G. & Otárola, E. Finite Element Discretizations of a Convective Brinkman–Forchheimer Model Under Singular Forcing. J Sci Comput 99, 58 (2024). https://doi.org/10.1007/s10915-024-02513-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02513-5

Keywords

Mathematics Subject Classification

Navigation