Skip to main content
Log in

Error Estimates for Optimal Control Problems Involving the Stokes System and Dirac Measures

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The aim of this work is to derive a priori error estimates for finite element discretizations of control–constrained optimal control problems that involve the Stokes system and Dirac measures. The first problem entails the minimization of a cost functional that involves point evaluations of the velocity field that solves the state equations. This leads to an adjoint problem with a linear combination of Dirac measures as a forcing term and whose solution exhibits reduced regularity properties. The second problem involves a control variable that corresponds to the amplitude of forces modeled as point sources. This leads to a solution of the state equations with reduced regularity properties. For each problem, we propose a finite element solution technique and derive a priori error estimates. Finally, we present numerical experiments, in two and three dimensions, that illustrate our theoretical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143, 119–137 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Allendes, A., Fuica, F., Otárola, E., Quero, D.: An adaptive FEM for the pointwise tracking optimal control problem of the Stokes equations. SIAM J. Sci. Comput. 41, A2967–A2998 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Allendes, A., Otárola, E., Rankin, R., Salgado, A.J.: Adaptive finite element methods for an optimal control problem involving Dirac measures. Numer. Math. 137, 159–197 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Allendes, A., Otárola, E., Salgado, A.J.: A posteriori error estimates for the Stokes problem with singular sources. Comput. Methods Appl. Mech. Eng. 345, 1007–1032 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Amestoy, P., Duff, I., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    MATH  Google Scholar 

  6. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001). (electronic)

    MathSciNet  MATH  Google Scholar 

  7. Antil, H., Otárola, E., Salgado, A.J.: Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems. IMA J. Numer. Anal. 38, 852–883 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Behringer, N., Leykekhman, D., Vexler, B.: Global and local pointwise error estimates for finite element approximations to the Stokes problem on convex polyhedra, arXiv:1907.06871 (2019)

  9. Behringer, N., Meidner, D., Vexler, B.: Finite element error estimates for optimal control problems with pointwise tracking. Pure Appl. Funct. Anal. 4, 177–204 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Bermúdez, A., Gamallo, P., Rodríguez, R.: Finite element methods in local active control of sound. SIAM J. Control Optim. 43, 437–465 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Bertoluzza, S., Decoene, A., Lacouture, L., Martin, S.: Local error analysis for the Stokes equations with a punctual source term. Numer. Math. 140, 677–701 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods Texts. in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  13. Brett, C., Dedner, A., Elliott, C.: Optimal control of elliptic PDEs at points. IMA J. Numer. Anal. 36, 1015–1050 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Brown, R.M., Shen, Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183–1206 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Chang, L., Gong, W., Yan, N.: Numerical analysis for the approximation of optimal control problems with pointwise observations. Math. Methods Appl. Sci. 38, 4502–4520 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Choi, J., Dong, H., Kim, D.: Green functions of conormal derivative problems for stationary Stokes system. J. Math. Fluid Mech. 20, 1745–1769 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Chua, S.-K.: Weighted Sobolev inequalities on domains satisfying the chain condition. Proc. Am. Math. Soc. 117, 449–457 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002)

    MATH  Google Scholar 

  19. Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20, 74–97 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133, 707–742 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Demlow, A., Larsson, S.: Local pointwise a posteriori gradient error bounds for the Stokes equations. Math. Comput. 82, 625–649 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Dolzmann, G., Müller, S.: Estimates for Green’s matrices of elliptic systems by \(L^p\) theory. Manuscr. Math. 88, 261–273 (1995)

    MATH  Google Scholar 

  23. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI. Translated and revised from the 1995 Spanish original by David Cruz-Uribe (2001)

  24. Durán, R.G., Muschietti, M.A.: An explicit right inverse of the divergence operator which is continuous in weighted norms. Studia Math. 148, 207–219 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Durán, R.G., Nochetto, R.H.: Weighted inf-sup condition and pointwise error estimates for the Stokes problem. Math. Comput. 54, 63–79 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Durán, R.G., Otárola, E., Salgado, A.J.: Stability of the Stokes projection on weighted spaces and applications. Math. Comput. 89, 1581–1603 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Elliott, S., Nelson, P.: Active Control of Sound. Academic Press, London (1991)

    Google Scholar 

  28. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    MATH  Google Scholar 

  29. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7, 77–116 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Farwig, R., Sohr, H.: Weighted \(L^q\)-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49, 251–288 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Fuller, C., Elliott, S., Nelson, P.: Active Control of Vibration. Academic Press, London (1996)

    Google Scholar 

  32. Galdi, G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems. Springer, Berlin, pp. xiv+1018 (2011)

  33. Girault, V., Nochetto, R.H., Scott, L.R.: Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra. Numer. Math. 131, 771–822 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361, 3829–3850 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Gong, W., Wang, G., Yan, N.: Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52, 2008–2035 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Grafakos, L.: Classical Fourier Analysis Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    Google Scholar 

  37. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman Advanced Publishing Program, Boston MA (1985)

    MATH  Google Scholar 

  38. Grüter, M., Widman, K.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Guzmán, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comput. 81, 1879–1902 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Heinonen, J.,  Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY. Unabridged republication of the 1993 original (2006)

  41. Hernández, E., Otárola, E.: A locking-free FEM in active vibration control of a Timoshenko beam. SIAM J. Numer. Anal. 47, 2432–2454 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Hofmann, S., Kim, S.: The Green function estimates for strongly elliptic systems of second order. Manuscr. Math. 124, 139–172 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Hurri-Syrjānen, R.: A weighted Poincaré inequality with a doubling weight. Proc. Am. Math. Soc. 126, 545–552 (1998)

    MATH  Google Scholar 

  45. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976)

    MathSciNet  MATH  Google Scholar 

  46. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, vol. 88. Academic Press/Harcourt Brace Jovanovich Publishers, New York/London (1980)

  47. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  48. Kozlov, V.A., Maz’ya, V.G., Schwab, C.: On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone. J. Reine Angew. Math. 456, 65–97 (1994)

    MathSciNet  MATH  Google Scholar 

  49. Lacouture, L.: A numerical method to solve the stokes problem with a punctual force in source term. Comptes Rendus Mécanique 343, 187–191 (2015)

    Google Scholar 

  50. Leykekhman, D., Vexler, B.: Optimal a priori error estimates of parabolic optimal control problems with pointwise control. SIAM J. Numer. Anal. 51, 2797–2821 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Maz’ya, V., Rossmann, J.: \(L_p\) estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Maz’ya, V.G., Rossmann, J.: Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Methods Appl. Sci. 29, 965–1017 (2006)

    MathSciNet  MATH  Google Scholar 

  53. Mitrea, D., Mitrea, I.: On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36, 304–327 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, pp. viii+241 (2012)

  55. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    MathSciNet  MATH  Google Scholar 

  56. Otárola, E., Salgado, A.J.: The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing. J. Math. Anal. Appl. 471, 599–612 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Otárola, E., Salgado, A.J.: On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra. arXiv:2004.07966 (2020)

  58. Ott, K.A., Kim, S., Brown, R.M.: The Green function for the mixed problem for the linear Stokes system in domains in the plane. Math. Nachr. 288, 452–464 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L_{\infty }\) of the \(\dot{H}^{1}\)-projection into finite element spaces. Math. Comput. 38, 1–22 (1982)

    MATH  Google Scholar 

  60. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence, RI, (2010). Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels

  61. Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Otárola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FF is supported by UTFSM through Beca de Mantención. EO is partially supported by CONICYT through FONDECYT Project 11180193. DQ is partially supported by UTFSM through Programa de Incentivos a la Iniciación Científica (PIIC)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuica, F., Otárola, E. & Quero, D. Error Estimates for Optimal Control Problems Involving the Stokes System and Dirac Measures. Appl Math Optim 84, 1717–1750 (2021). https://doi.org/10.1007/s00245-020-09693-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09693-0

Keywords

Mathematics Subject Classification

Navigation