Skip to main content
Log in

A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the a posteriori error estimate corresponding to the Brinkman–Darcy–Forchheimer problem. We introduce the variational formulation discretized by using the finite element method. Then, we establish an a posteriori error estimation with two types of error indicators related to the discretization and to the linearization. Finally, numerical investigations are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abelman S, Parsa AB, Sayehvand HO (2018) Nanofluid flow and heat transfer in a brinkman porous channel with variable porosity. Quaest Math 41(4):449–467

    Article  MathSciNet  Google Scholar 

  • Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142:1–88

    Article  MathSciNet  Google Scholar 

  • Arnold D, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21:337–344

    Article  MathSciNet  Google Scholar 

  • Babuška I, Rheinboldt Wc (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 4:736–754

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Sayah T (2015) A posteriori error analysis of the time dependent Navier–Stokes equations with mixed boundary conditions. SEMA J 69(1):1–23

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Maday Y, Rapetti F (2004) Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications, vol 45. Springer, Berlin

    MATH  Google Scholar 

  • Bernardi C, Hecht F, Verfürth R (2009) A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions. ESIAM Math Numer Anal 43(6):1185–1201

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Dakroub J, Mansour G, Sayah T (2016) A posteriori analysis of iterative algorithms for Navier–Stokes problem. ESAIM Math Model Numer Anal 50(4):1035–1055

    Article  MathSciNet  Google Scholar 

  • Cao J, Kitanidis PK (1999) Adaptive-grid simulation of groundwater flow in heterogeneous aquifers. Adv Water Resour 22:681–696

    Article  Google Scholar 

  • Chalhoub N, Omnes P, Sayah T, El Zahlaniyeh R (2021) A posteriori error estimates for the time dependent convection-diffusion-reaction equation coupled with the Darcy system. Numer Algor. https://doi.org/10.1007/s11075-021-01152-3

    Article  MATH  Google Scholar 

  • Ciarlet PG (1991) Basic error estimates for elliptic problems. In: Handbook of numerical analysis, vol II. North-Holland, Amsterdam, pp 17–351

  • Ciarlet PG (2013) Analysis of the Scott-Zhang interpolation in the fractional order Sobolev space. J Numer Math 21(3):173–180

    Article  MathSciNet  Google Scholar 

  • Clément P (1975) Approximation by finite element functions using local regularisation. RAIRO Anal Numer 9:77–84

    MATH  Google Scholar 

  • Cocquet PH, Rakotobe M, Ramalingom D, Bastide A (2021) Error analysis for the finite element approximation of the Darcy-Brinkman-Forchheimer model for porous media with mixed boundary conditions. J Comput Appl Math 381:113008

    Article  MathSciNet  Google Scholar 

  • Dakroub J, Faddoul J, Sayah T (2019) A posteriori analysis of the newton method applied to the Navier–Stokes problem. J Appl Math Comput. https://doi.org/10.1007/s12190-020-01323-w

    Article  Google Scholar 

  • Dib S, Girault V, Hecht F, Sayah T (2019) A posteriori error estimates for Darcy’a problem coupled with the heat equation. ESAIM M2AN 53(6):2121–2159

    Article  MathSciNet  Google Scholar 

  • Diersch HJG (2013) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science & Business Media, Berlin

    Google Scholar 

  • El Akkad A, El Khalfi A, Guessous N (2011) An a posteriori estimate for mixed finite element approximations of the Navier–Stokes equations. J Korean Math Soc 48:529–550

    Article  MathSciNet  Google Scholar 

  • El Alaoui L, Ern A, Vohralík M (2011) Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput Methods Appl Mech Eng 200:2782–2795

    Article  MathSciNet  Google Scholar 

  • Ern A, Guermond JL (2013) Theory and practice of finite elements. Springer Science & Business Media, Berlin, p 159

    Google Scholar 

  • Ern A, Vohralík M (2013) Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J Sci Comput 35(4):A1761–A1791

    Article  MathSciNet  Google Scholar 

  • Garibotti CR, Peszynska M (2009) Upscaling non-Darcy flow. Transp Porous Media 8(3):401–430

    Article  MathSciNet  Google Scholar 

  • Girault V, Lions L (2001) Two-grid finite-element schemes for the steady Navier–Stokes problem in polyhedra. Port Math 58(1):25–57

    MathSciNet  MATH  Google Scholar 

  • Girault V, Raviart A (1986) Finite element methods for the Navier–Stokes equations, theory and algorithms. In: Springer series in computational mathematics, vol 5. Springer, Berlin

  • Girault V, Raviart PA (1979) Finite element methods for the Navier–Stokes equations, Lecture notes in mathematics, vol 749. Springer, Berlin, p 208

  • Guo Z, Zhao TS (2005) A lattice Boltzmann model for convection heat transfer in porous media. Numer Heat Transf B 47(2):157–177

    Article  Google Scholar 

  • Hecht F (2012) New development in FreeFem++. J Numer Math 20:251–266

    Article  MathSciNet  Google Scholar 

  • Hornung U (1997) Homogenization and porous media. Springer, New York

    Book  Google Scholar 

  • Jin H, Prudhomme S (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88

    MathSciNet  Google Scholar 

  • John V (2001) Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Appl Numer Math 37(4):503–518

    Article  MathSciNet  Google Scholar 

  • Kaloni PN, GuoJ sc (1996) Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman–Forchheimer model. J Math Anal Appl 204(1):138–155

    Article  MathSciNet  Google Scholar 

  • Mallik G, Vohralik M, Yousef S (2020) Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers. J Comput Appl Math 366:112367

    Article  MathSciNet  Google Scholar 

  • Matossian V, Bhat V, Parashar M et al (2005) Autonomie oil reservoir optimization on the grid. Concurr Comput Pract Exp 17(1):1–26

    Article  Google Scholar 

  • Mozolevski I, Prudhomme S (2015) Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Comput Methods Appl Mech Eng 288:127–145

    Article  MathSciNet  Google Scholar 

  • Nassreddine G, Sayah T (2017) New results for the a posteriori estimates of the two dimensional time dependent Navier–Stokes equation. Int J Mech 11:155–165

    Google Scholar 

  • Nield DA (1991) The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int J Heat Fluid Flow 12(3):269–272

    Article  Google Scholar 

  • Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40(16):3955–3967

    Article  Google Scholar 

  • Pousin J, Rappaz J (1994) Consistency, stability a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer Math 69(2):213–231

    Article  MathSciNet  Google Scholar 

  • Skrzypacz P (2010) Finite element analysis for flows in chemical reactors. Univ. Fak. für Mathematik, Diss, Magdeburg

  • Skrzypacz P, Wei D (2017) Solvability of the Brinkman–Forchheimer–Darcy equation. J Appl Math

  • Taylor C, Hood P (1973) A numerical solution of the Navier–Stokes equations using the finite element technique. J Fluid Mech 1(1):73–100

    MathSciNet  MATH  Google Scholar 

  • Vafai K (1984) Convective flow and heat transfer in variable-porosity media. J Fluid Mech 147:233–259

    Article  Google Scholar 

  • Varsakelis C, Papalexandris MV (2017) On the well-posedness of the Darcy–Brinkman–Forchheimer equations for coupled porous media-clear fluid flow. Nonlinearity 30(4):1449

    Article  MathSciNet  Google Scholar 

  • Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, New York

    MATH  Google Scholar 

  • Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Numerical Mathematics and Scientific Computation, Oxford

    Book  Google Scholar 

  • Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25(1):27–61

    Article  Google Scholar 

  • Winterberg M, Tsotsas E (2000) Modelling of heat transport in beds packed with spherical particles for various bed geometries and/or thermal boundary conditions. Int J Therm Sci 39(5):556–570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Sayah.

Additional information

Communicated by Abimael Loula.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayah, T. A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem. Comp. Appl. Math. 40, 256 (2021). https://doi.org/10.1007/s40314-021-01647-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01647-8

Keywords

Mathematics Subject Classification

Navigation