Skip to main content
Log in

Mixed finite element for two-dimensional incompressible convective Brinkman-Forchheimer equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this work, the two-dimensional convective Brinkman-Forchheimer equations are considered. The well-posedness for the variational problem and its mixed finite element approximation is established, and the error estimates based on the conforming approximation are obtained. For the computation, a one-step Newton (or semi-Newton) iteration algorithm initialized using a fixed-point iteration is proposed. Finally, numerical experiments using a Taylor-Hood mixed element built on a structured or unstructured triangular mesh are implemented. The numerical results obtained using the algorithm are compared with the analytic data, and are shown to be in very good agreement. Moreover, the lid-driven problem at Reynolds numbers of 100 and 400 is considered and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. FORCHHEIMER, P. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher In-geneieure, 45, 1782–1788 (1901)

    Google Scholar 

  2. CONSTANTIN, P. Inviscid limit for damped and driven incompressible Navier-Stokes equations in R2. Communications in Mathematical Physics, 275, 529–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. GEORGIEV, V. and TODOROVA, G. Existence of a solution of the wave equation with nonlinear damping and source terms. Journal of Differential Equations, 109, 295–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. RAMMAHA, M. A. and STREI, T. A. Global existence and nonexistence for nonlinear wave equations with damping and source terms. Transactions of the American Mathematical Society, 354(9), 3621–3637 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. ZHAO, C. D. and YOU, Y. C. Approximation of the incompressible convective Brinkman-Forchheimer equations. Journal of Evolution Equations, 12(4), 767–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. GIRAULT, V. and WHEELER, M. F. Numerical discretization of a Darcy-Forchheimer model. Numerische Mathematik, 110, 161–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. PAN, H. and RUI, H. X. Mixed element method for two-dimensional Darcy-Forchheimer model. Journal of Scientific Computing, 52, 563–587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. ZHOU, Y. Global existence and nonexistence for a nonlinear wave equation with damping and source terms. Mathematische Nachrichten, 278(11), 1341–1358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. HSIAO, L. Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, Singa-pore (1997)

    MATH  Google Scholar 

  10. ZHAO, C. S. and LI, K. T. The global attractor of Navier-Stokes equations with linear dampness on the whole two-dimensional space and estimates of its dimensions. Acta Mathematicae Applicatae Sinica, 23(1), 90–98 (2000)

    MathSciNet  MATH  Google Scholar 

  11. JIANG, J. P. and HOU, Y. R. The global attractor of g-Navier-Stokes equations with linear dampness on R2. Applied Mathematics and Computation, 215, 1068–1076 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. VAFAI, K. and TIEN, C. L. Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat and Mass Transfer, 24(2), 195–203 (1981)

    Article  MATH  Google Scholar 

  13. JOSEPH, D. D., NIELD, D. A., and PAPANICOLAOU, G. Nonlinear equation governing flow in a saturated porous medium. Water Resources Research, 18(4), 1049–1052 (1982)

    Article  Google Scholar 

  14. NIELD, D. A. The limitations of the Brinkman-Forchheimer equation in modeling flow in a satu-rated porous medium and at an interface. International Journal of Heat and Mass Transfer, 12(3), 269–272 (1991)

    Google Scholar 

  15. NIELD, D. and BEJAN, A. Convection in Porous Media, Springer, Berlin (2006)

    MATH  Google Scholar 

  16. STRAUGHAN, B. Stability and Wave Motion in Porous Media, Springer, New York (2008)

    MATH  Google Scholar 

  17. SHENOY, A. Non-Newtonian fluid heat transfer in porous media. Advances in Heat Transfer, 24, 101–190 (1994)

    Article  Google Scholar 

  18. UğRULU, D. On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Analysis, 68, 1986–1992 (2008)

    Article  MathSciNet  Google Scholar 

  19. OUYANG, Y. and YANG, L. A note on the existence of a global attractor for th. Brinkman-Forchheimer equations. Nonlinear Analysis, 70, 2054–2059 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. KALANTAROV, V. K. and ZELIK, S. Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure and Applied Analysis, 11(5), 2037–2054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. CELEBI, A. O., KALANTAROV, V. K., and UğURLU, D. On continuous dependence on coeffi-cients of the Brinkman-Forchheimer equations. Applied Mathematics Letters, 19, 801–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. LIU, Y. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math-ematical and Computer Modelling, 49, 1401–1415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. LIU, D. M. and LI, K. T. Finite element analysis of the Stokes equations with damping. Mathe-matica Numerica Sinica, 32(4), 433–448 (2010)

    MathSciNet  MATH  Google Scholar 

  24. SHI, D. Y. and YU, Z. Y. Superclose and superconvergence of finite element discretizations for the Stokes equations with damping. Applied Mathematics and Computation, 219, 7693–7698 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. BOLING, G. and LIRENG, W. Qualitative Methods for Nonlinear Boundary Value Problems, Sun Yat-set University Press, Guangzhou (1992)

    Google Scholar 

  26. ADAMS, R. A. Sobolev Spaces, Academic Press, New York (1975)

    MATH  Google Scholar 

  27. GIRAULT, V. and RAVIART, P. A. Finite Elment Approximation of the Navier-Stokes Equations, Springer-Verlag, New York (1979)

    Book  MATH  Google Scholar 

  28. TEMAM, R. Navier-Stokes Equations Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam (1984)

    MATH  Google Scholar 

  29. CIARLET, P. G. The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam/New York/Oxford (1978)

    MATH  Google Scholar 

  30. LIU, W. B. and YAN, N. N. Some a posteriori error estimators for p-Laplacian based on residual estimation or gradient recovery. Journal of Computational Physics, 16(4), 435–477 (2001)

    MathSciNet  MATH  Google Scholar 

  31. AMROUCHE, A. and GIRAULT, V. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Mathematical Journal, 4(1), 4109–4140 (1994)

    MathSciNet  MATH  Google Scholar 

  32. GHIA, U., GHIA, K. N., and SHIN, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387–411 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaitai Li.

Additional information

Citation: LIU, D. M. and LI, K. T. Mixed finite element for two-dimensional incompressible convective Brinkman-Forchheimer equations. Applied Mathematics and Mechanics (English Edition), 40(6), 889–910 (2019) https://doi.org/10.1007/s10483-019-2487-9

Project supported by the National Natural Science Foundation of China (Nos. 11461068, 11362021, and 11401511) and the Doctoral Foundation of Xinjiang Uygur Autonomous Region of China (No.BS110101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, K. Mixed finite element for two-dimensional incompressible convective Brinkman-Forchheimer equations. Appl. Math. Mech.-Engl. Ed. 40, 889–910 (2019). https://doi.org/10.1007/s10483-019-2487-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2487-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation