Skip to main content
Log in

A Banach spaces-based mixed finite element method for the stationary convective Brinkman–Forchheimer problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We propose and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations. In addition to the original fluid variables, the pseudostress is introduced as an auxiliary unknown, and then the incompressibility condition is used to eliminate the pressure, which is computed afterwards by a postprocessing formula depending on the aforementioned tensor and the velocity. As a consequence, we obtain a mixed variational formulation consisting of a nonlinear perturbation of, in turn, a perturbed saddle point problem in a Banach spaces framework. In this way, and differently from the techniques previously developed for this model, no augmentation procedure needs to be incorporated into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that recently established solvability results for perturbed saddle-point problems in Banach spaces, along with the well-known Banach–Nečas–Babuška and Banach theorems, are applied to prove the well-posedness of the continuous and discrete systems. The finite element discretization involves Raviart–Thomas elements of order \(k \ge 0\) for the pseudostress tensor and discontinuous piecewise polynomial elements of degree \(\le k\) for the velocity. Stability, convergence, and optimal a priori error estimates for the associated Galerkin scheme are obtained. Numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method. In particular, the case of flow through a 2D porous media with fracture networks is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Benavides, G.A., Caucao, S., Gatica, G.N., Hopper, A.A.: A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Engrg. 371 113285, 29 pp (2020)

  2. Benavides, G.A., Caucao, S., Gatica G.N., Hopper, A.A.: A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Calcolo 59(1), Paper No. 6, 44 (2022)

  3. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, 15. Springer-Verlag, New York (1991)

  4. Camaño, J., García, C., Oyarzúa, R.: Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem. Numer. Methods Par. Differ. Equ. 37(5), 2895–2923 (2021)

    Article  MathSciNet  Google Scholar 

  5. Camaño, J., Gatica, G.N., Oyarzúa, R., Tierra, G.: An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54(2), 1069–1092 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camaño, J., Muñoz, C., Oyarzúa, R.: Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48, 114–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caucao, S., Colmenares, E., Gatica, G.N., Inzunza, C.: A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem. Comp. Math. Appl. 145, 65–89 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caucao, S., Esparza, J.: An augmented mixed FEM for the convective Brinkman–Forchheimer problem: a priori and a posteriori error analysis. J. Comput. Appl. Math. 438, Paper No. 115517 (2024)

  9. Caucao, S., Gatica, G.N., Oyarzúa, R., Sánchez, N.: A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman–Forchheimer equations. J. Sci. Comput. 85(2), Paper No. 44, 37 (2020)

  10. Caucao, S., Oyarzúa, R., Villa-Fuentes, S.: A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57(4), Paper No. 36, 39 (2020)

  11. Caucao, S., Oyarzúa, R. , Villa-Fuentes, S., Yotov, I. A three-field Banach spaces-based mixed formulation for the unsteady Brinkman–Forchheimer equations. Comput. Methods Appl. Mech. Engrg. 394, Paper No. 114895, 32 (2022)

  12. Caucao, S., Yotov, I.: A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA J. Numer. Anal. 41(4), 2708–2743 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Celebi, A.O., Kalantarov, V.K., Ugurlu, D.: Continuous dependence for the convective Brinkman–Forchheimer equations. Appl. Anal. 84(9), 877–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colmenares, E., Gatica, G.N., Moraga, S.: A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54(5), 1525–1568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cocquet, P.-H., Rakotobe, M., Ramalingom, D., Bastide, A.: Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions. J. Comput. Appl. Math. 381, 113008, 24 (2021)

  16. Correa, C.I., Gatica, G.N.: On the continuous and discrete well-posedness of perturbed saddle-point formulations in Banach spaces. Comput. Math. Appl. 117, 14–23 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Correa, C.I., Gatica, G.N., Ruiz-Baier, R.: New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces. ESAIM Math. Model. Numer. Anal., https://doi.org/10.1051/m2an/2023024

  18. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, 159. Springer-Verlag, New York (2004)

  19. Gatica, G.N.: A simple introduction to the mixed finite element method. Theory and Applications. SpringerBriefs in Mathematics. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  20. Gatica, G.N., Núñez, N., Ruiz-Baier, R.: New non-augmented mixed finite element methods for the Navier–Stokes–Brinkman equations using Banach spaces. J. Numer. Math., https://doi.org/10.1515/jnma-2022-0073

  21. Gatica, L.F., Oyarzúa, R., Sánchez, N.: A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes-Brinkman problem. Comput. Math. Appl. 75(7), 2420–2444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin (1986)

  23. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisations-dualité d’une classe de problémes de Dirichlet non lineaires. R.A.I.R.O. tome 9, no 2, p. 41-76 (1975)

  24. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, D., Li, K.: Mixed finite element for two-dimensional incompressible convective Brinkman–Forchheimer equations. Appl. Math. Mech. (English Ed.) 40(6), 889–910 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maz’ya, V., Rossmann, J.: Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains. Arch. Rational Mech. Anal. 194, 669–712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Skrzypacz, P., Wei, D.: Solvability of the Brinkman–Forchheimer–Darcy equation. J. Appl. Math. 2017, Art. ID 7305230, 10 pp

  28. Varsakelis, C., Papalexandris, M.V.: On the well-posedness of the Darcy-Brinkman–Forchheimer equations for coupled porous media-clear fluid flow. Nonlinearity 30(4), 1449–1464 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, H.: Axisymmetric solutions to the convective Brinkman-Forchheimer equations. J. Math. Anal. Appl. 520(2), Paper No. 126892, 12 (2023)

  30. Zhao, C., You, Y.: Approximation of the incompressible convective Brinkman-Forchheimer equations. J. Evol. Equ. 12(4), 767–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Caucao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by ANID-Chile through the projects Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT210087), Fondecyt 11220393, and Fondecyt 1181748; by Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC\(^2\)), Universidad Católica de la Santísima Concepción; and by Centro de Investigación en Ingeniería Matemática (CI\(^2\)MA), Universidad de Concepción.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caucao, S., Gatica, G.N. & Gatica, L.F. A Banach spaces-based mixed finite element method for the stationary convective Brinkman–Forchheimer problem. Calcolo 60, 51 (2023). https://doi.org/10.1007/s10092-023-00544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00544-2

Keywords

Mathematics Subject Classification

Navigation