Skip to main content
Log in

Conductivity of Weakly Disordered Metals Close to a “Ferromagnetic” Quantum Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate analytically the conductivity of weakly disordered metals close to a “ferromagnetic” quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential \(V(q,\omega )\), due to critical fluctuations, is peaked at zero momentum \(q=0\). Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the \(T^2\) term for small a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For the use of functions \(f(\epsilon )\) and \(n(\omega )\), we follow Ref. [13].

References

  1. J. Paglione, M.A. Tanatar, D.G. Hawthorn, F. Ronning, R.W. Hill, M. Sutherland, L. Taillefer, C. Petrovic, Phys. Rev. Lett. 97, 106606 (2006)

    Article  ADS  Google Scholar 

  2. A. Bianchi, R. Movshovich, I. Vekhter, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 257001 (2003)

    Article  ADS  Google Scholar 

  3. S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, A.P. Mackenzie, Science 294, 329 (2001)

    Article  ADS  Google Scholar 

  4. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, F. Steglich, Phys. Rev. Lett. 89, 056402 (2002)

    Article  ADS  Google Scholar 

  5. P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, F. Steglich, Phys. Rev. Lett. 94, 076402 (2005)

    Article  ADS  Google Scholar 

  6. N.P. Butch, K. Jin, K. Kirshenbaum, R.L. Greene, J. Paglione, PNAS 109, 8440 (2012)

    Article  ADS  Google Scholar 

  7. T. Shibauchi, L. Krusin-Elbaum, M. Hasegawa, Y. Kasahara, R. Okazaki, Y. Matsuda, PNAS 105, 7120 (2008)

    Article  ADS  Google Scholar 

  8. L. Balicas, S. Nakatsuji, H. Lee, P. Schlottmann, T.P. Murphy, Z. Fisk, Phys. Rev. B 72, 064422 (2005)

    Article  ADS  Google Scholar 

  9. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, Z. Fisk, Nat. Phys. 4, 603 (2008)

    Article  Google Scholar 

  10. J.G. Analytis, H.-H. Kuo, R.D. McDonald, M. Wartenbe, P.M.C. Rourke, N.E. Hussey, I.R. Fisher, Nat. Phys. 10, 194 (2014)

    Article  Google Scholar 

  11. H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  12. G. Kastrinakis, Europhys. Lett. 112, 67001 (2015)

    Article  ADS  Google Scholar 

  13. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Cliffwoods, NY, 1964)

    MATH  Google Scholar 

  14. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  15. J. Hertz, Phys. Rev. B 14, 1165 (1976)

    Article  ADS  Google Scholar 

  16. A.J. Millis, Phys. Rev. B 48, 7183 (1993)

    Article  ADS  Google Scholar 

  17. G. Kastrinakis, Phys. Rev. B 72, 075137 (2005)

    Article  ADS  Google Scholar 

  18. G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum Press, New York, 1990). (the relevant material is mostly in section 3 of chapter 7)

    Book  Google Scholar 

  19. L. Dell’ Anna, W. Metzner, Phys. Rev. Lett. 98, 136402 (2007). (erratum Phys. Rev. Lett. 103, 159904 (2009))

    Article  ADS  Google Scholar 

  20. A.V. Chubukov, D.L. Maslov, Phys. Rev. Lett. 103, 216401 (2009)

    Article  ADS  Google Scholar 

  21. S.S. Lee, Phys. Rev. B 80, 165102 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kastrinakis.

Appendices

Appendix A: On the Calculation of the Scattering Rate

The derivation below follows that of [12], i.e. (I), and equation numbers refer to (I) as well. In the limit \(T \rightarrow 0\) the thermal function \(X= \coth (\omega /2T) \; + \; \tanh ((\epsilon -\omega )/2T)\) in Eq. (I-4) becomes \(X=2\) for \(2T< \omega <\epsilon \), and \(X=0\) for \(\omega <-2T\) and \(\omega >\epsilon \). Then the integration over \(\omega \)—compare with Eq. (I-7)—amounts to

$$\begin{aligned} 2 \int _{2T}^{\epsilon } {\text {d}}\omega \; \text {Im} \; V(q,\omega ) \; R(q,\omega ) \simeq g \ R_0 \; \ln \left( \frac{(h_q \; a_q)^2+\epsilon ^2}{(h_q \; a_q)^2+ 4T^2} \right) \simeq g \; R_0 \; \frac{\epsilon ^2}{(h_q \; a_q)^2},\nonumber \\ \end{aligned}$$
(48)

for \( h_q \; a_q > \epsilon \). The rest of the algebra proceeds as in Eq. (I-8) and onwards. Thus, the scattering rate scales like \(\epsilon ^2\) as well, as expected for the FL regime.

Appendix B: The Terms \(R_V,R_1,R_2,L\) in Eq. (15)

The terms \(R_1,R_2\) each contain a single propagator G. Hence, upon the final integration over momentum k they both yield a small contribution. This is the case because this integration is similar to an integration over \(\epsilon _k\) from \(-\infty \) to \(+\infty \), which can be taken as part of a contour integral closing at infinity. That contour can be taken such that the pole of the G in the integrand lies outside of it and hence yields a zero contribution. C.f. also Ref. [18].

The term \(R_V\) is due to the residue from the pole \(z=z_0=-i \; a_q \; h_q\) of V(qz). Here both G’s enter the formula for the residue. However, their poles are on the same semi-plane (i.e. in a combination \(G^A G^A\)), and the argument for \(R_1,R_2\) applies as well.

The term L is the residue from the 2 poles \(z=z_k,z_k^*\) of \(\Lambda (k,z)\)—c.f. Eqs. (36), (37)—with

$$\begin{aligned} z_k = \xi _k + i \; W_k, \;\; W_k^2=S^2-R_k. \end{aligned}$$
(49)

Considering the function

$$\begin{aligned} H(z)=n(z) \; V(q,z) \; G(k+q,i \epsilon _n+ z +i \omega _l)\; G(k+q,i \epsilon _n+z ) \; R_{k+q} \;\; \end{aligned}$$
(50)

we have

$$\begin{aligned} L = \frac{H(z_{k+q})}{z_{k+q}-z_{k+q}^*} + \frac{H(z_{k+q}^*)}{z_{k+q}^*-z_{k+q}}. \end{aligned}$$
(51)

This term is much smaller than \(I_V\) because \(|\text {Im} \; H(z)| \ll |\text {Re} \; H(z)| \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastrinakis, G. Conductivity of Weakly Disordered Metals Close to a “Ferromagnetic” Quantum Critical Point. J Low Temp Phys 191, 123–135 (2018). https://doi.org/10.1007/s10909-017-1847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1847-2

Keywords

Navigation