Skip to main content
Log in

Intrinsic magnetic topological materials

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)

    Article  ADS  Google Scholar 

  2. L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)

    Article  ADS  Google Scholar 

  3. L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  4. J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75(12), 121306 (2007)

    Article  ADS  Google Scholar 

  5. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)

    Article  Google Scholar 

  6. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)

    Article  ADS  Google Scholar 

  7. M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)

    Article  ADS  Google Scholar 

  8. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)

    Article  ADS  Google Scholar 

  9. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325(5937), 178 (2009)

    Article  ADS  Google Scholar 

  10. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature 460(7259), 1101 (2009)

    Article  ADS  Google Scholar 

  11. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)

    Article  Google Scholar 

  12. T. Valla, Z. H. Pan, D. Gardner, Y. S. Lee, and S. Chu, Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator, Phys. Rev. Lett. 108(11), 117601 (2012)

    Article  ADS  Google Scholar 

  13. C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, and X. J. Zhou, Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment, Proc. Natl. Acad. Sci. USA 109(10), 3694 (2012)

    Article  ADS  Google Scholar 

  14. L. A. Wray, S. Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, A topological insulator surface under strong Coulomb, magnetic and disorder perturbations, Nat. Phys. 7, 32 (2011)

    Article  Google Scholar 

  15. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)

    Article  ADS  Google Scholar 

  16. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)

    Article  ADS  Google Scholar 

  17. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107(12), 127205 (2011)

    Article  ADS  Google Scholar 

  19. A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)

    Article  ADS  Google Scholar 

  20. X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)

    Article  ADS  Google Scholar 

  21. Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)

    Article  ADS  Google Scholar 

  22. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)

    Article  ADS  Google Scholar 

  23. Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)

    Article  ADS  Google Scholar 

  24. W. Ning and Z. Mao, Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals, APL Mater. 8(9), 090701 (2020)

    Article  ADS  Google Scholar 

  25. M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S. Y. Xu, and J. X. Yin, Weyl, Dirac and high-fold chiral fermions in topological quantum matter, Nat. Rev. Mater. 6(9), 784 (2021)

    Article  ADS  Google Scholar 

  26. B. A. Bernevig, C. Felser, and H. Beidenkopf, Progress and prospects in magnetic topological materials, Nature 603(7899), 41 (2022)

    Article  ADS  Google Scholar 

  27. F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566(7745), 486 (2019)

    Article  ADS  Google Scholar 

  28. M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566(7745), 480 (2019)

    Article  ADS  Google Scholar 

  29. T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566(7745), 475 (2019)

    Article  ADS  Google Scholar 

  30. C. Liu and X. R. Liu, Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators, Acta Phys. Sin. 68(22), 227901 (2019)

    Article  Google Scholar 

  31. Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82(10), 102001 (2013)

    Article  ADS  Google Scholar 

  32. J. A. Sobota, Y. He, and Z. X. Shen, Angle-resolved photoemission studies of quantum materials, Rev. Mod. Phys. 93(2), 025006 (2021)

    Article  ADS  Google Scholar 

  33. Y. Wang, On the topological surface states of the intrinsic magnetic topological insulator Mn—Bi—Te family, arXiv: 2211.04017 (2022)

  34. Y. Zhao and Q. Liu, Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family, Appl. Phys. Lett. 119(6), 060502 (2021)

    Article  ADS  Google Scholar 

  35. P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, and J. Wang, Intrinsic magnetic topological insulators, Innovation 2(2), 100098 (2021)

    Google Scholar 

  36. Y. Li and Y. Xu, First-principles discovery of novel quantum physics and materials: From theory to experiment, Comput. Mater. Sci. 190, 110262 (2021)

    Article  Google Scholar 

  37. C. Y. Chen, Surface state energy gap of magnetic origin and “semi magnetic topological insulator”, Physics 50, 267 (2021) (in Chinese)

    Google Scholar 

  38. K. He, MnBi2Te4-family intrinsic magnetic topological materials, npj Quantum Mater. 5, 90 (2020)

    Article  ADS  Google Scholar 

  39. G. H. Zhan, H. Q Wang, and H. J. Zhang, Antiferromagnetic topological insulators and axion insulators — MnBi2Te4 family magnetic systems, Physics 49(12), 817 (2020)

    Google Scholar 

  40. T. Kida, L. A. Fenner, A. A. Dee, I. Terasaki, M. Hagiwara, and A. S. Wills, The giant anomalous Hall effect in the ferromagnet Fe3Sn2 — a frustrated Kagomé metal, J. Phys.: Condens. Matter 23(11), 112205 (2011)

    ADS  Google Scholar 

  41. F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Y. Chang, O. Erten, and P. Coleman, Möbius Kondo insulators, Nat. Phys. 13(8), 794 (2017)

    Article  Google Scholar 

  43. K. Shiozaki, M. Sato, and K. Gomi, Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states, Phys. Rev. B 91(15), 155120 (2015)

    Article  ADS  Google Scholar 

  44. R. X. Zhang, F. Wu, and S. Das Sarma, Mobius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)

    Article  ADS  Google Scholar 

  45. C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Robust axion insulator and Chern insulator phases in a two-dimensional anti-ferromagnetic topological insulator, Nat. Mater. 19(5), 522 (2020)

    Article  ADS  Google Scholar 

  46. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)

    Article  ADS  Google Scholar 

  47. L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator, Science 354(6316), 1124 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal, Nat. Phys. 14(11), 1125 (2018)

    Article  Google Scholar 

  49. C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Signatures of the Adler—Bell—Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7(1), 10735 (2016)

    Article  ADS  Google Scholar 

  50. S. N. Guin, P. Vir, Y. Zhang, N. Kumar, S. J. Watzman, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth, C. Shekhar, Y. Sun, and C. Felser, Zero-field Nernst effect in a ferromagnetic Kagomé-lattice Weylsemimetal Co3Sn2S2, Adv. Mater. 31(25), 1806622 (2019)

    Article  Google Scholar 

  51. E. K. Liu and S. Zhang, Topologically enhanced zerofield transverse Nernst thermoelectric effect in magnetic topological semimetals, Sci. China Phys. Mech. & Astron. 49(12), 127001 (2019)

    Article  Google Scholar 

  52. R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic topological insulators, Phys. Rev. B 81(24), 245209 (2010)

    Article  ADS  Google Scholar 

  53. M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu Vyazovskaya, Y. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects, 2D Mater. 4, 025082 (2017)

    Article  Google Scholar 

  54. M. M. Otrokov, T. V. Menshchikova, I. P. Rusinov, M. G. Vergniory, V. M. Kuznetsov, and E. V. Chulkov, Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators, JETP Lett. 105(5), 297 (2017)

    Article  ADS  Google Scholar 

  55. Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S. C. Zhang, X. Ma, Q. K. Xue, and K. He, Experimental realization of an intrinsic magnetic topological insulator, Chin. Phys. Lett. 36(7), 076801 (2019)

    Article  ADS  Google Scholar 

  56. D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect, Phys. Rev. Lett. 122(20), 206401 (2019)

    Article  ADS  Google Scholar 

  57. M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films, Phys. Rev. Lett. 122(10), 107202 (2019)

    Article  ADS  Google Scholar 

  58. J. Li, Y. Li, S. Du, Z. Wang, B. L. Gu, S. C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials, Sci. Adv. 5(6), eaaw5685 (2019)

    Article  ADS  Google Scholar 

  59. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator, Nature 576(7787), 416 (2019)

    Article  ADS  Google Scholar 

  60. Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, and E. V. Chulkov, Novel ternary layered manganese bismuth tellurides of the MnTe—Bi2Te3 system: Synthesis and crystal structure, J. Alloys Compd. 789, 443 (2019)

    Article  Google Scholar 

  61. J. Wu, F. Liu, C. Liu, Y. Wang, C. Li, Y. Lu, S. Matsuishi, and H. Hosono, Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal, Adv. Mater. 32(23), e2001815 (2020)

    Article  Google Scholar 

  62. D. Souchay, M. Nentwig, D. Günther, S. Keilholz, J. de Boor, A. Zeugner, A. Isaeva, M. Ruck, A. U. B. Wolter, B. Büchner, and O. Oeckler, Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials, J. Mater. Chem. C 7(32), 9939 (2019)

    Article  Google Scholar 

  63. D. S. Lee, T. H. Kim, C. H. Park, C. Y. Chung, Y. S. Lim, W. S. Seo, and H. H. Park, Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4, CrystEngComm 15(27), 5532 (2013)

    Article  Google Scholar 

  64. T. Hirahara, S. V. Eremeev, T. Shirasawa, Y. Okuyama, T. Kubo, R. Nakanishi, R. Akiyama, A. Takayama, T. Hajiri, S. I. Ideta, M. Matsunami, K. Sumida, K. Miyamoto, Y. Takagi, K. Tanaka, T. Okuda, T. Yokoyama, S. I. Kimura, S. Hasegawa, and E. V. Chulkov, Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer, Nano Lett. 17(6), 3493 (2017)

    Article  ADS  Google Scholar 

  65. J. A. Hagmann, X. Li, S. Chowdhury, S. N. Dong, S. Rouvimov, S. J. Pookpanratana, K. Man Yu, T. A. Orlova, T. B. Bolin, C. U. Segre, D. G. Seiler, C. A. Richter, X. Liu, M. Dobrowolska, and J. K. Furdyna, Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures, New J. Phys. 19(8), 085002 (2017)

    Article  ADS  Google Scholar 

  66. L. Ding, C. Hu, F. Ye, E. Feng, N. Ni, and H. Cao, Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7, Phys. Rev. B 101(2), 020412 (2020)

    Article  ADS  Google Scholar 

  67. J. Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J. G. Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney, Crystal growth and magnetic structure of MnBi2Te4, Phys. Rev. Mater. 3(6), 064202 (2019)

    Article  Google Scholar 

  68. M. Z. Shi, B. Lei, C. S. Zhu, D. H. Ma, J. H. Cui, Z. L. Sun, J. J. Ying, and X. H. Chen, Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1, 2), Phys. Rev. B 100(15), 155144 (2019)

    Article  ADS  Google Scholar 

  69. Y. J. Hao, P. Liu, Y. Feng, X. M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H. Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, and C. Liu, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X 9, 041038 (2019)

    Google Scholar 

  70. C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, H. Brawer, A. P. Ramirez, L. Ding, H. Cao, Q. Liu, D. Dessau, and N. Ni, A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling, Nat. Commun. 11(1), 97 (2020)

    Article  ADS  Google Scholar 

  71. X. M. Ma, Z. Chen, E. F. Schwier, Y. Zhang, Y. J. Hao, S. Kumar, R. Lu, J. Shao, Y. Jin, M. Zeng, X. R. Liu, Z. Hao, K. Zhang, W. Mansuer, C. Song, Y. Wang, B. Zhao, C. Liu, K. Deng, J. Mei, K. Shimada, Y. Zhao, X. Zhou, B. Shen, W. Huang, C. Liu, H. Xu, and C. Chen, Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators, Phys. Rev. B 102(24), 245136 (2020)

    Article  ADS  Google Scholar 

  72. R. Lu, H. Sun, S. Kumar, Y. Wang, M. Gu, M. Zeng, Y. J. Hao, J. Li, J. Shao, X. M. Ma, Z. Hao, K. Zhang, W. Mansuer, J. Mei, Y. Zhao, C. Liu, K. Deng, W. Huang, B. Shen, K. Shimada, E. F. Schwier, C. Liu, Q. Liu, and C. Chen, Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface, Phys. Rev. X 11(1), 011039 (2021)

    Google Scholar 

  73. Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X 9(4), 041040 (2019)

    Google Scholar 

  74. H. Li, S. Y. Gao, S. F. Duan, Y. F. Xu, K. J. Zhu, S. J. Tian, J. C. Gao, W. H. Fan, Z. C. Rao, J. R. Huang, J. J. Li, D. Y. Yan, Z. T. Liu, W. L. Liu, Y. B. Huang, Y. L. Li, Y. Liu, G. B. Zhang, P. Zhang, T. Kondo, S. Shin, H. C. Lei, Y. G. Shi, W. T. Zhang, H. M. Weng, T. Qian, and H. Ding, Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1, Phys. Rev. X 9(4), 041039 (2019)

    Google Scholar 

  75. A. Liang, C. Chen, H. Zheng, W. Xia, K. Huang, L. Wei, H. Yang, Y. Chen, X. Zhang, X. Xu, M. Wang, Y. Guo, L. Yang, Z. Liu, and Y. Chen, Approaching a minimal topological electronic structure in antiferromagnetic topological insulator MnBi2Te4 via surface modification, Nano Lett. 22(11), 4307 (2022)

    Article  ADS  Google Scholar 

  76. R. Xu, Y. Bai, J. Zhou, J. Li, X. Gu, N. Qin, Z. Yin, X. Du, Q. Zhang, W. Zhao, Y. Li, Y. Wu, C. Ding, L. Wang, A. Liang, Z. Liu, Y. Xu, X. Feng, K. He, Y. Chen, and L. Yang, Evolution of the electronic structure of ultrathin MnBi2Te4 films, Nano Lett. 22(15), 6320 (2022)

    Article  ADS  Google Scholar 

  77. R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S. Moser, C. H. Min, S. Schatz, K. Kißner, M. Ünzelmann, C. I. Fornari, H. B. Vasili, M. Valvidares, K. Sakamoto, D. Mondal, J. Fujii, I. Vobornik, S. Jung, C. Cacho, T. K. Kim, R. J. Koch, C. Jozwiak, A. Bostwick, J. D. Denlinger, E. Rotenberg, J. Buck, M. Hoesch, F. Diekmann, S. Rohlf, M. Kalläne, K. Rossnagel, M. M. Otrokov, E. V. Chulkov, M. Ruck, A. Isaeva, and F. Reinert, Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001), Phys. Rev. B 100(12), 121104 (2019)

    Article  ADS  Google Scholar 

  78. S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi, S. Kempinger, J. Hu, C. A. Heikes, P. Quarterman, W. Ratcliff, J. A. Borchers, H. Zhang, X. Ke, D. Graf, N. Alem, C. Z. Chang, N. Samarth, and Z. Mao, Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. Res. 1(1), 012011 (2019)

    Article  Google Scholar 

  79. Y. Hu, L. Xu, M. Shi, A. Luo, S. Peng, Z. Y. Wang, J. J. Ying, T. Wu, Z. K. Liu, C. F. Zhang, Y. L. Chen, G. Xu, X. H. Chen, and J. F. He, Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m (Bi2Te3)n heterostructures, Phys. Rev. B 101, 161113(R) (2020)

    Article  ADS  Google Scholar 

  80. D. Nevola, H. X. Li, J. Q. Yan, R. G. Moore, H. N. Lee, H. Miao, and P. D. Johnson, Coexistence of surface ferromagnetism and a gapless topological state in MnBi2Te4, Phys. Rev. Lett. 125(11), 117205 (2020)

    Article  ADS  Google Scholar 

  81. A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh, S. O. Filnov, E. F. Schwier, S. Kumar, K. Miyamoto, T. Okuda, A. Kimura, K. Kuroda, K. Yaji, S. Shin, Y. Takeda, Y. Saitoh, Z. S. Aliev, N. T. Mamedov, I. R. Amiraslanov, M. B. Babanly, M. M. Otrokov, S. V. Eremeev, and E. V. Chulkov, Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4, Sci. Rep. 10(1), 13226 (2020)

    Article  ADS  Google Scholar 

  82. P. Swatek, Y. Wu, L. L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B 101(16), 161109 (2020)

    Article  ADS  Google Scholar 

  83. A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova, I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M. B. Babanly, K. Kokh, O. E. Tereshchenko, M. M. Otrokov, E. V. Chulkov, K. A. Zvezdin, and A. K. Zvezdin, Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study, Phys. Rev. B 104(11), 115168 (2021)

    Article  ADS  Google Scholar 

  84. R. C. Vidal, H. Bentmann, J. I. Facio, T. Heider, P. Kagerer, C. I. Fornari, T. R. F. Peixoto, T. Figgemeier, S. Jung, C. Cacho, B. Buchner, J. van den Brink, C. M. Schneider, L. Plucinski, E. F. Schwier, K. Shimada, M. Richter, A. Isaeva, and F. Reinert, Orbital complexity in intrinsic magnetic topological insulators MnBi4Te7 and MnBi6Te10, Phys. Rev. Lett. 126(17), 176403 (2021)

    Article  ADS  Google Scholar 

  85. X. Wu, J. Li, X. M. Ma, Y. Zhang, Y. Liu, C. S. Zhou, J. Shao, Q. Wang, Y. J. Hao, Y. Feng, E. F. Schwier, S. Kumar, H. Sun, P. Liu, K. Shimada, K. Miyamoto, T. Okuda, K. Wang, M. Xie, C. Chen, Q. Liu, C. Liu, and Y. Zhao, Distinct topological surface states on the two terminations of MnBi4Te7, Phys. Rev. X 10(3), 031013 (2020)

    Google Scholar 

  86. S. Tian, S. Gao, S. Nie, Y. Qian, C. Gong, Y. Fu, H. Li, W. Fan, P. Zhang, T. Kondo, S. Shin, J. Adell, H. Fedderwitz, H. Ding, Z. Wang, T. Qian, and H. Lei, Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states, Phys. Rev. B 102(3), 035144 (2020)

    Article  ADS  Google Scholar 

  87. I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, S. V. Eremeev, S. O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A. G. Rybkin, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zverev, A. Kimura, O. E. Tereshchenko, K. A. Kokh, L. Petaccia, G. Di Santo, A. Ernst, P. M. Echenique, N. T. Mamedov, A. M. Shikin, and E. V. Chulkov, Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family, npj Quantum Mater. 5, 54 (2020)

    Article  ADS  Google Scholar 

  88. N. H. Jo, L. L. Wang, R. J. Slager, J. Yan, Y. Wu, K. Lee, B. Schrunk, A. Vishwanath, and A. Kaminski, Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10, Phys. Rev. B 102(4), 045130 (2020)

    Article  ADS  Google Scholar 

  89. C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H. J. Tien, H. Li, A. G. Linn, S. W. Lien, C. Y. Huang, S. Mackey, J. Liu, P. V. S. Reddy, B. Singh, A. Agarwal, A. Bansil, M. Song, D. Li, S. Y. Xu, H. Lin, H. Cao, T. R. Chang, D. Dessau, and N. Ni, Realization of an intrinsic ferromagnetic topological state in MnBi8Te13, Sci. Adv. 6(30), eaba4275 (2020)

    Article  ADS  Google Scholar 

  90. T. Hirahara, M. M. Otrokov, T. T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S. V. Eremeev, and E. V. Chulkov, Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone, Nat. Commun. 11(1), 4821 (2020)

    Article  ADS  Google Scholar 

  91. J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, and H. Hosono, Natural van der Waals heterostructural single crystals with both magnetic and topological properties, Sci. Adv. 5(11), eaax9989 (2019)

    Article  ADS  Google Scholar 

  92. R. C. Vidal, A. Zeugner, J. I. Facio, R. Ray, M. H. Haghighi, A. U. B. Wolter, L. T. Corredor Bohorquez, F. Caglieris, S. Moser, T. Figgemeier, T. R. F. Peixoto, H. B. Vasili, M. Valvidares, S. Jung, C. Cacho, A. Alfonsov, K. Mehlawat, V. Kataev, C. Hess, M. Richter, B. Büchner, J. van den Brink, M. Ruck, F. Reinert, H. Bentmann, and A. Isaeva, Topological electronic structure and intrinsic magnetization in MnBi4Te7: A Bi2Te3 derivative with a periodic Mn sublattice, Phys. Rev. X 9(4), 041065 (2019)

    Google Scholar 

  93. Y. Deng, Y. Yu, Z. S. Meng, Z. Guo, Z. Xu, J. Wang, H. C. Xian, and Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science 367(6480), 895 (2020)

    Article  ADS  Google Scholar 

  94. J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, High-Chern-number and high-temperature quantum Hall effect without Landau levels, Natl. Sci. Rev. 7(8), 1280 (2020)

    Article  Google Scholar 

  95. A. Gao, Y. F. Liu, C. Hu, J. X. Qiu, C. Tzschaschel, B. Ghosh, S. C. Ho, D. Berube, R. Chen, H. Sun, Z. Zhang, X. Y. Zhang, Y. X. Wang, N. Wang, Z. Huang, C. Felser, A. Agarwal, T. Ding, H. J. Tien, A. Akey, J. Gardener, B. Singh, K. Watanabe, T. Taniguchi, K. S. Burch, D. C. Bell, B. B. Zhou, W. Gao, H. Z. Lu, A. Bansil, H. Lin, T. R. Chang, L. Fu, Q. Ma, N. Ni, and S. Y. Xu, Layer Hall effect in a 2D topological axion antiferromagnet, Nature 595(7868), 521 (2021)

    Article  ADS  Google Scholar 

  96. S. Li, M. Gong, S. Cheng, H. Jiang, and X. C. Xie, Dissipationless layertronics in axion insulator MnBi2Te4, arXiv: 2207.09186 (2022)

  97. L. Xu, Y. Mao, H. Wang, J. Li, Y. Chen, Y. Xia, Y. Li, D. Pei, J. Zhang, H. Zheng, K. Huang, C. Zhang, S. Cui, A. Liang, W. Xia, H. Su, S. Jung, C. Cacho, M. Wang, G. Li, Y. Xu, Y. Guo, L. Yang, Z. Liu, Y. Chen, and M. Jiang, Persistent surface states with diminishing gap in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator, Sci. Bull. (Beijing) 65(24), 2086 (2020)

    Article  ADS  Google Scholar 

  98. S. V. Eremeev, I. P. Rusinov, Y. M. Koroteev, A. Y. Vyazovskaya, M. Hoffmann, P. M. Echenique, A. Ernst, M. M. Otrokov, and E. V. Chulkov, Topological magnetic materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals compounds family, J. Phys. Chem. Lett. 12(17), 4268 (2021)

    Article  Google Scholar 

  99. S. V. Eremeev, M. M. Otrokov, and E. V. Chulkov, Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab-initio study, J. Alloys Compd. 709, 172 (2017)

    Article  Google Scholar 

  100. T. Murakami, Y. Nambu, T. Koretsune, G. Xiangyu, T. Yamamoto, C. M. Brown, and H. Kageyama, Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state, Phys. Rev. B 100(19), 195103 (2019)

    Article  ADS  Google Scholar 

  101. J. Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, and B. C. Sales, Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4, Phys. Rev. B 100(10), 104409 (2019)

    Article  ADS  Google Scholar 

  102. L. Chen, D. Wang, C. Shi, C. Jiang, H. Liu, G. Cui, X. Zhang, and X. Li, Electronic structure and magnetism of MnSb2Te4, J. Mater. Sci. 55(29), 14292 (2020)

    Article  ADS  Google Scholar 

  103. Y. Chen, Y. W. Chuang, S. H. Lee, Y. Zhu, K. Honz, Y. Guan, Y. Wang, K. Wang, Z. Mao, J. Zhu, C. Heikes, P. Quarterman, P. Zajdel, J. A. Borchers, and W. Ratcliff, Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4, Phys. Rev. Mater. 4(6), 064411 (2020)

    Article  Google Scholar 

  104. G. Shi, M. Zhang, D. Yan, H. Feng, M. Yang, Y. Shi, and Y. Li, Anomalous Hall effect in layered ferrimagnet MnSb2Te4, Chin. Phys. Lett. 37(4), 047301 (2020)

    Article  ADS  Google Scholar 

  105. S. Wimmer, J. Sanchez-Barriga, P. Kuppers, A. Ney, E. Schierle, F. Freyse, O. Caha, J. Michalicka, M. Liebmann, D. Primetzhofer, M. Hoffman, A. Ernst, M. M. Otrokov, G. Bihlmayer, E. Weschke, B. Lake, E. V. Chulkov, M. Morgenstern, G. Bauer, G. Springholz, and O. Rader, Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45–50 K, Adv. Mater. 33(42), 2102935 (2021)

    Article  Google Scholar 

  106. Z. Zang, Y. Zhu, M. Xi, S. Tian, T. Wang, P. Gu, Y. Peng, S. Yang, X. Xu, Y. Li, B. Han, L. Liu, Y. Wang, P. Gao, J. Yang, H. Lei, Y. Huang, and Y. Ye, Layer-number-dependent antiferromagnetic and ferromagnetic behavior in MnSb2Te4, Phys. Rev. Lett. 128(1), 017201 (2022)

    Article  ADS  Google Scholar 

  107. S. Huan, S. Zhang, Z. Jiang, H. Su, H. Wang, X. Zhang, Y. Yang, Z. Liu, X. Wang, N. Yu, Z. Zou, D. Shen, J. Liu, and Y. Guo, Multiple magnetic topological phases in bulk van der Waals crystal MnSb4Te7, Phys. Rev. Lett. 126(24), 246601 (2021)

    Article  ADS  Google Scholar 

  108. Y. Yin, X. Ma, D. Yan, C. Yi, B. Yue, J. Dai, L. Zhao, X. Yu, Y. Shi, J. T. Wang, and F. Hong, Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator MnSb2Te4, Phys. Rev. B 104(17), 174114 (2021)

    Article  ADS  Google Scholar 

  109. J. Y. Lin, Z. J. Chen, W. Q. Xie, X. B. Yang, and Y. J. Zhao, Toward ferromagnetic semimetal ground state with multiple Weyl nodes in van der Waals crystal MnSb4Te7, New J. Phys. 24(4), 043033 (2022)

    Article  ADS  Google Scholar 

  110. C. Pei, M. Xi, Q. Wang, W. Shi, J. Wu, L. Gao, Y. Zhao, S. Tian, W. Cao, C. Li, M. Zhang, S. Zhu, Y. Chen, H. Lei, and Y. Qi, Pressure-induced superconductivity in magnetic topological insulator candidate MnSb4Te7, Phys. Rev. Mater. 6(10), L101801 (2022)

    Article  ADS  Google Scholar 

  111. X. Zhang, Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10, arXiv: 2111.04973 (2021)

  112. X. M. Ma, Y. Zhao, K. Zhang, S. Kumar, R. Lu, J. Li, Q. Yao, J. Shao, F. Hou, X. Wu, M. Zeng, Y. J. Hao, Z. Hao, Y. Wang, X. R. Liu, H. Shen, H. Sun, J. Mei, K. Miyamoto, T. Okuda, M. Arita, E. F. Schwier, K. Shimada, K. Deng, C. Liu, J. Lin, Y. Zhao, C. Chen, Q. Liu, and C. Liu, Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4, Phys. Rev. B 103(12), L121112 (2021)

    Article  ADS  Google Scholar 

  113. T. Zhu, A. J. Bishop, T. Zhou, M. Zhu, D. J. O’Hara, A. A. Baker, S. Cheng, R. C. Walko, J. J. Repicky, T. Liu, J. A. Gupta, C. M. Jozwiak, E. Rotenberg, J. Hwang, I. Zutic, and R. K. Kawakami, Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4, Nano Lett. 21(12), 5083 (2021)

    Article  ADS  Google Scholar 

  114. M. Q. Arguilla, N. D. Cultrara, Z. J. Baum, S. Jiang, R. D. Ross, and J. E. Goldberger, EuSn2As2: an exfoliatable magnetic layered Zintl—Klemm phase, Inorg. Chem. Front. 4(2), 378 (2017)

    Article  Google Scholar 

  115. F. Kabir, Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2, arXiv: 1912.08645 (2019)

  116. S. Regmi, M. M. Hosen, B. Ghosh, B. Singh, G. Dhakal, C. Sims, B. Wang, F. Kabir, K. Dimitri, Y. Liu, A. Agarwal, H. Lin, D. Kaczorowski, A. Bansil, and M. Neupane, Temperature-dependent electronic structure in a higher-order topological insulator candidate EuIn2As2, Phys. Rev. B 102(16), 165153 (2020)

    Article  ADS  Google Scholar 

  117. M. Marshall, I. Pletikosić, M. Yahyavi, H. J. Tien, T. R. Chang, H. Cao, and W. Xie, Magnetic and electronic structures of antiferromagnetic topological material candidate EuMg2Bi2, J. Appl. Phys. 129(3), 035106 (2021)

    Article  ADS  Google Scholar 

  118. Y. Zhang, K. Deng, X. Zhang, M. Wang, Y. Wang, C. Liu, J. W. Mei, S. Kumar, E. F. Schwier, K. Shimada, C. Chen, and B. Shen, In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2, Phys. Rev. B 101(20), 205126 (2020)

    Article  ADS  Google Scholar 

  119. L. Zhao, C. Yi, C. T. Wang, Z. Chi, Y. Yin, X. Ma, J. Dai, P. Yang, B. Yue, J. Cheng, F. Hong, J. T. Wang, Y. Han, Y. Shi, and X. Yu, Monoclinic EuSn2As2: A novel high-pressure network structure, Phys. Rev. Lett. 126(15), 155701 (2021)

    Article  ADS  Google Scholar 

  120. S. X. M. Riberolles, T. V. Trevisan, B. Kuthanazhi, T. W. Heitmann, F. Ye, D. C. Johnston, S. L. Bud’ko, D. H. Ryan, P. C. Canfield, A. Kreyssig, A. Vishwanath, R. J. McQueeney, L. Wang, P. P. Orth, and B. G. Ueland, Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2, Nat. Commun. 12(1), 999 (2021)

    Article  ADS  Google Scholar 

  121. H. C. Chen, Z. F. Lou, Y. X. Zhou, Q. Chen, B. J. Xu, S. J. Chen, J. H. Du, J. H. Yang, H. D. Wang, and M. H. Fang, Negative magnetoresistance in antiferromagnetic topological insulator EuSn2As2, Chin. Phys. Lett. 37(4), 047201 (2020)

    Article  ADS  Google Scholar 

  122. H. Li, W. Gao, Z. Chen, W. Chu, Y. Nie, S. Ma, Y. Han, M. Wu, T. Li, Q. Niu, W. Ning, X. Zhu, and M. Tian, Magnetic properties of the layered magnetic topological insulator EuSn2As2, Phys. Rev. B 104(5), 054435 (2021)

    Article  ADS  Google Scholar 

  123. H. Sun, C. Chen, Y. Hou, W. Wang, Y. Gong, M. Huo, L. Li, J. Yu, W. Cai, N. Liu, R. Wu, D. X. Yao, and M. Wang, Magnetism variation of the compressed anti-ferromagnetic topological insulator EuSn2As2, Sci. China Phys. Mech. Astron. 64(11), 118211 (2021)

    Article  ADS  Google Scholar 

  124. A. M. Goforth, P. Klavins, J. C. Fettinger, and S. M. Kauzlarich, Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2, Inorg. Chem. 47(23), 11048 (2008)

    Article  Google Scholar 

  125. T. Tolinski and D. Kaczorowski, Magnetic properties of the putative higher-order topological insulator EuIn2As2, SciPost Physics Proceedings, doi: https://doi.org/10.21468/SciPostPhysProc (2022)

  126. Y. Xu, Z. Song, Z. Wang, H. Weng, and X. Dai, Higher-order topology of the axion insulator EuIn2As2, Phys. Rev. Lett. 122(25), 256402 (2019)

    Article  ADS  Google Scholar 

  127. M. Gong, D. Sar, J. Friedman, D. Kaczorowski, S. Abdel Razek, W. C. Lee, and P. Aynajian, Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2, Phys. Rev. B 106(12), 125156 (2022)

    Article  ADS  Google Scholar 

  128. P. Rosa, Y. Xu, M. Rahn, J. Souza, S. Kushwaha, L. Veiga, A. Bombardi, S. Thomas, M. Janoschek, E. Bauer, M. Chan, Z. Wang, J. Thompson, N. Harrison, P. Pagliuso, A. Bernevig, and F. Ronning, Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator, npj Quantum Mater. 5, 52 (2020)

    Article  ADS  Google Scholar 

  129. N. Varnava, T. Berry, T. M. McQueen, and D. Vanderbilt, Engineering magnetic topological insulators in Eu5M2X6 Zintl compounds, Phys. Rev. B 105(23), 235128 (2022)

    Article  ADS  Google Scholar 

  130. H. Wang, N. Mao, X. Hu, Y. Dai, B. Huang, and C. Niu, A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions, Mater. Horiz. 8(3), 956 (2021)

    Article  Google Scholar 

  131. J. Liu, S. Meng, and J. T. Sun, Spin-orientation-dependent topological states in two-dimensional anti-ferromagnetic NiTl2S4 monolayers, Nano Lett. 19(5), 3321 (2019)

    Article  ADS  Google Scholar 

  132. P. Tang, Q. Zhou, G. Xu, and S. C. Zhang, Dirac fermions in an antiferromagnetic semimetal, Nat. Phys. 12(12), 1100 (2016)

    Article  Google Scholar 

  133. J. Wang, Antiferromagnetic Dirac semimetals in two dimensions, Phys. Rev. B 95(11), 115138 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  134. S. M. Young and B. J. Wieder, Filling-enforced magnetic Dirac semimetals in two dimensions, Phys. Rev. Lett. 118(18), 186401 (2017)

    Article  ADS  Google Scholar 

  135. S. Li, Y. Liu, Z. M. Yu, Y. Jiao, S. Guan, X. L. Sheng, Y. Yao, and S. A. Yang, Two-dimensional antiferromagnetic Dirac fermions in monolayer TaCoTe2, Phys. Rev. B 100(20), 205102 (2019)

    Article  ADS  Google Scholar 

  136. N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2, Science 365(6459), 1286 (2019)

    Article  ADS  Google Scholar 

  137. D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365(6459), 1282 (2019)

    Article  ADS  Google Scholar 

  138. K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, and S. Nakatsuji, Evidence for magnetic Weyl fermions in a correlated metal, Nat. Mater. 16(11), 1090 (2017)

    Article  ADS  Google Scholar 

  139. A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci. Adv. 2(4), e1501870 (2016)

    Article  ADS  Google Scholar 

  140. S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527(7577), 212 (2015)

    Article  ADS  Google Scholar 

  141. B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11(9), 724 (2015)

    Article  Google Scholar 

  142. J. Z. Ma, J. B. He, Y. F. Xu, B. Q. Lv, D. Chen, W. L. Zhu, S. Zhang, L. Y. Kong, X. Gao, L. Y. Rong, Y. B. Huang, P. Richard, C. Y. Xi, E. S. Choi, Y. Shao, Y. L. Wang, H. J. Gao, X. Dai, C. Fang, H. M. Weng, G. F. Chen, T. Qian, and H. Ding, Three-component fermions with surface Fermi arcs in tungsten carbide, Nat. Phys. 14(4), 349 (2018)

    Article  Google Scholar 

  143. S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. K. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11(9), 748 (2015)

    Article  Google Scholar 

  144. L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan, and Y. L. Chen, Weyl semimetal phase in the non-centrosymmetric compound TaAs, Nat. Phys. 11(9), 728 (2015)

    Article  Google Scholar 

  145. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)

    Article  ADS  Google Scholar 

  146. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)

    Article  ADS  Google Scholar 

  147. M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)

    Article  ADS  Google Scholar 

  148. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)

    Article  ADS  Google Scholar 

  149. S. H. Do, K. Kaneko, R. Kajimoto, K. Kamazawa, M. B. Stone, J. Y. Y. Lin, S. Itoh, T. Masuda, G. D. Samolyuk, E. Dagotto, W. R. Meier, B. C. Sales, H. Miao, and A. D. Christianson, Damped Dirac magnon in the metallic Kagomé antiferromagnet FeSn, Phys. Rev. B 105(18), L180403 (2022)

    Article  ADS  Google Scholar 

  150. Z. Lin, C. Wang, P. Wang, S. Yi, L. Li, Q. Zhang, Y. Wang, Z. Wang, H. Huang, Y. Sun, Y. Huang, D. Shen, D. Feng, Z. Sun, J. H. Cho, C. Zeng, and Z. Zhang, Dirac fermions in antiferromagnetic FeSn Kagomé lattices with combined space inversion and time-reversal symmetry, Phys. Rev. B 102(15), 155103 (2020)

    Article  ADS  Google Scholar 

  151. M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad Ghimire, J. G. Checkelsky, and R. Comin, Dirac fermions and flat bands in the ideal Kagomé metal FeSn, Nat. Mater. 19(2), 163 (2020)

    Article  ADS  Google Scholar 

  152. M. Han, H. Inoue, S. Fang, C. John, L. Ye, M. K. Chan, D. Graf, T. Suzuki, M. P. Ghimire, W. J. Cho, E. Kaxiras, and J. G. Checkelsky, Evidence of two-dimensional flat band at the surface of antiferromagnetic Kagomé metal FeSn, Nat. Commun. 12(1), 5345 (2021)

    Article  ADS  Google Scholar 

  153. S. H. Lee, Y. Kim, B. Cho, J. Park, M. S. Kim, K. Park, H. Jeon, M. Jung, K. Park, J. D. Lee, and J. Seo, Spin-polarized and possible pseudospin-polarized scanning tunneling microscopy in Kagomé metal FeSn, Commun. Phys. 5(1), 235 (2022)

    Article  Google Scholar 

  154. B. C. Sales, J. Yan, W. R. Meier, A. D. Christianson, S. Okamoto, and M. A. McGuire, Electronic, magnetic, and thermodynamic properties of the Kagomé layer compound FeSn, Phys. Rev. Mater. 3(11), 114203 (2019)

    Article  Google Scholar 

  155. C. Liu, C. J. Yi, X. Y. Wang, J. L. Shen, T. Xie, L. Yang, T. Fennel, U. Stuhr, S. L. Li, H. M. Weng, Y. G. Shi, E. K. Liu, and H. Q. Luo, Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2, Sci. China Phys. Mech. Astron. 64(5), 257511 (2021)

    Article  ADS  Google Scholar 

  156. D. F. Liu, E. K. Liu, Q. N. Xu, J. L. Shen, Y. W. Li, D. Pei, A. J. Liang, P. Dudin, T. K. Kim, C. Cacho, Y. F. Xu, Y. Sun, L. X. Yang, Z. K. Liu, C. Felser, S. S. P. Parkin, and Y. L. Chen, Direct observation of the spin—orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2, npj Quantum Mater. 7, 11 (2022)

    Article  ADS  Google Scholar 

  157. M. Kanagaraj, J. Ning, and L. He, Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study, Reviews in Physics 8, 100072 (2022)

    Article  Google Scholar 

  158. I. Belopolski, T. A. Cochran, X. Liu, Z. J. Cheng, X. P. Yang, Z. Guguchia, S. S. Tsirkin, J. X. Yin, P. Vir, G. S. Thakur, S. S. Zhang, J. Zhang, K. Kaznatcheev, G. Cheng, G. Chang, D. Multer, N. Shumiya, M. Litskevich, E. Vescovo, T. K. Kim, C. Cacho, N. Yao, C. Felser, T. Neupert, and M. Z. Hasan, Signatures of Weyl fermion annihilation in a correlated Kagomé magnet, Phys. Rev. Lett. 127(25), 256403 (2021)

    Article  ADS  Google Scholar 

  159. G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M. E. Kamminga, M. Yu, H. Tüysüz, N. Kumar, V. Süß, R. Saha, A. K. Srivastava, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, Y. Sun, E. Liu, and C. Felser, Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation, Sci. Adv. 5(8), eaaw9867 (2019)

    Article  ADS  Google Scholar 

  160. Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. B 97(23), 235416 (2018)

    Article  ADS  Google Scholar 

  161. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun. 9(1), 3681 (2018)

    Article  ADS  Google Scholar 

  162. M. Tanaka, Y. Fujishiro, M. Mogi, Y. Kaneko, T. Yokosawa, N. Kanazawa, S. Minami, T. Koretsune, R. Arita, S. Tarucha, M. Yamamoto, and Y. Tokura, Topological Kagomé magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect, Nano Lett. 20(10), 7476 (2020)

    Article  ADS  Google Scholar 

  163. H. Reichlova, T. Janda, J. Godinho, A. Markou, D. Kriegner, R. Schlitz, J. Zelezny, Z. Soban, M. Bejarano, H. Schultheiss, P. Nemec, T. Jungwirth, C. Felser, J. Wunderlich, and S. T. B. Goennenwein, Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn, Nat. Commun. 10(1), 5459 (2019)

    Article  ADS  Google Scholar 

  164. T. Chen, T. Tomita, S. Minami, M. Fu, T. Koretsune, M. Kitatani, I. Muhammad, D. Nishio-Hamane, R. Ishii, F. Ishii, R. Arita, and S. Nakatsuji, Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge, Nat. Commun. 12(1), 572 (2021)

    Article  ADS  Google Scholar 

  165. J. R. Soh, F. de Juan, N. Qureshi, H. Jacobsen, H. Y. Wang, Y. F. Guo, and A. T. Boothroyd, Ground-state magnetic structure of Mn3Ge, Phys. Rev. B 101(14), 140411 (2020)

    Article  ADS  Google Scholar 

  166. J. Liu and L. Balents, Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge, Phys. Rev. Lett. 119(8), 087202 (2017)

    Article  ADS  Google Scholar 

  167. H. Yang, Y. Sun, Y. Zhang, W. J. Shi, S. S. P. Parkin, and B. Yan, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys. 19(1), 015008 (2017)

    Article  ADS  Google Scholar 

  168. N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge, Phys. Rev. Appl. 5(6), 064009 (2016)

    Article  ADS  Google Scholar 

  169. T. Higo, D. Qu, Y. Li, C. L. Chien, Y. Otani, and S. Nakatsuji, Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn, Appl. Phys. Lett. 113(20), 202402 (2018)

    Article  ADS  Google Scholar 

  170. T. Matsuda, N. Kanda, T. Higo, N. P. Armitage, S. Nakatsuji, and R. Matsunaga, Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films, Nat. Commun. 11(1), 909 (2020)

    Article  ADS  Google Scholar 

  171. J. M. Taylor, A. Markou, E. Lesne, P. K. Sivakumar, C. Luo, F. Radu, P. Werner, C. Felser, and S. S. P. Parkin, Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn, Phys. Rev. B 101(9), 094404 (2020)

    Article  ADS  Google Scholar 

  172. M. Ikhlas, T. Tomita, T. Koretsune, M. T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys. 13(11), 1085 (2017)

    Article  Google Scholar 

  173. C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, and C. Hess, Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge, Phys. Rev. B 100(8), 085111 (2019)

    Article  ADS  Google Scholar 

  174. X. Li, C. Collignon, L. Xu, H. Zuo, A. Cavanna, U. Gennser, D. Mailly, B. Fauque, L. Balents, Z. Zhu, and K. Behnia, Chiral domain walls of Mn3Sn and their memory, Nat. Commun. 10(1), 3021 (2019)

    Article  ADS  Google Scholar 

  175. P. K. Rout, P. V. P. Madduri, S. K. Manna, and A. K. Nayak, Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn, Phys. Rev. B 99(9), 094430 (2019)

    Article  ADS  Google Scholar 

  176. L. Xu, X. Li, L. Ding, K. Behnia, and Z. Zhu, Planar Hall effect caused by the memory of antiferromagnetic domain walls in Mn3Ge, Appl. Phys. Lett. 117(22), 222403 (2020)

    Article  ADS  Google Scholar 

  177. M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K. Muduli, M. Ikhlas, Y. Omori, T. Tomita, A. H. MacDonald, S. Nakatsuji, and Y. Otani, Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet, Nature 565(7741), 627 (2019)

    Article  ADS  Google Scholar 

  178. P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C. X. Liu, Z. Mao, and B. Yan, Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl, Nat. Commun. 11(1), 3476 (2020)

    Article  ADS  Google Scholar 

  179. G. Chang, S. Y. Xu, X. Zhou, S. M. Huang, B. Singh, B. Wang, I. Belopolski, J. Yin, S. Zhang, A. Bansil, H. Lin, and M. Z. Hasan, Topological Hopf and chain link semimetal states and their application to Co2MnGa, Phys. Rev. Lett. 119(15), 156401 (2017)

    Article  ADS  Google Scholar 

  180. I. Belopolski, G. Chang, T. A. Cochran, Z. J. Cheng, X. P. Yang, C. Hugelmeyer, K. Manna, J. X. Yin, G. Cheng, D. Multer, M. Litskevich, N. Shumiya, S. S. Zhang, C. Shekhar, N. B. M. Schroter, A. Chikina, C. Polley, B. Thiagarajan, M. Leandersson, J. Adell, S. M. Huang, N. Yao, V. N. Strocov, C. Felser, and M. Z. Hasan, Observation of a linked-loop quantum state in a topological magnet, Nature 604(7907), 647 (2022)

    Article  ADS  Google Scholar 

  181. Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversal-breaking Weyl fermions in magnetic Heusler alloys, Phys. Rev. Lett. 117(23), 236401 (2016)

    Article  ADS  Google Scholar 

  182. G. Chang, S. Y. Xu, H. Zheng, B. Singh, C. H. Hsu, G. Bian, N. Alidoust, I. Belopolski, D. S. Sanchez, S. Zhang, H. Lin, and M. Z. Hasan, Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X= Si, Ge, or Sn), Sci. Rep. 6(1), 38839 (2016)

    Article  ADS  Google Scholar 

  183. R. Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, and K. Ishida, Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy, J. Appl. Phys. 103(7), 07D718 (2008)

    Article  Google Scholar 

  184. A. W. Carbonari, R. N. Saxena, W. Jr Pendl, J. Mestnik Filho, R. N. Attili, M. Olzon-Dionysio, and S. D. de Souza, Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb, Ta, Cr; Z = Al, Ga), J. Magn. Magn. Mater. 163(3), 313 (1996)

    Article  ADS  Google Scholar 

  185. Z. Yan, R. Bi, H. Shen, L. Lu, S. C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B 96(4), 041103 (2017)

    Article  ADS  Google Scholar 

  186. M. Ezawa, Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon’s knot, trefoil knot, and other linked nodal varieties, Phys. Rev. B 96(4), 041202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  187. P. Y. Chang and C. H. Yee, Weyl-link semimetals, Phys. Rev. B 96(8), 081114 (2017)

    Article  ADS  Google Scholar 

  188. K. Sumida, Y. Sakuraba, K. Masuda, T. Kono, M. Kakoki, K. Goto, W. Zhou, K. Miyamoto, Y. Miura, T. Okuda, and A. Kimura, Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films, Commun. Mater. 1(1), 89 (2020)

    Article  Google Scholar 

  189. Q. Wu, A. A. Soluyanov, and T. Bzdusek, Non-Abelian band topology in noninteracting metals, Science 365(6459), 1273 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  190. I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S. M. Huang, B. Wang, T. R. Chang, S. Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Z. Hasan, Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet, Science 365(6459), 1278 (2019)

    Article  ADS  Google Scholar 

  191. C. Zhong, Y. Chen, Z. M. Yu, Y. Xie, H. Wang, S. A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nat. Commun. 8(1), 15641 (2017)

    Article  ADS  Google Scholar 

  192. A. Bouhon, Q. S. Wu, R. J. Slager, H. Weng, O. V. Yazyev, and T. Bzdušek, Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe, Nat. Phys. 16(11), 1137 (2020)

    Article  Google Scholar 

  193. J. Yuan, X. Shi, H. Su, X. Zhang, X. Wang, N. Yu, Z. Zou, W. Zhao, J. Liu, and Y. Guo, Magnetization tunable Weyl states in EuB6, Phys. Rev. B 106(5), 054411 (2022)

    Article  ADS  Google Scholar 

  194. S. Y. Gao, S. Xu, H. Li, C. J. Yi, S. M. Nie, Z. C. Rao, H. Wang, Q. X. Hu, X. Z. Chen, W. H. Fan, J. R. Huang, Y. B. Huang, N. Pryds, M. Shi, Z. J. Wang, Y. G. Shi, T. L. Xia, T. Qian, and H. Ding, Time-reversal symmetry breaking driven topological phase transition in EuB6, Phys. Rev. X 11(2), 021016 (2021)

    Google Scholar 

  195. S. Nie, Y. Sun, F. B. Prinz, Z. Wang, H. Weng, Z. Fang, and X. Dai, Magnetic semimetals and quantized anomalous Hall effect in EuB6, Phys. Rev. Lett. 124(7), 076403 (2020)

    Article  ADS  Google Scholar 

  196. X. Zhang, S. von Molnar, Z. Fisk, and P. Xiong, Spin-dependent electronic states of the ferromagnetic semimetal EuB6, Phys. Rev. Lett. 100(16), 167001 (2008)

    Article  ADS  Google Scholar 

  197. J. Kim, W. Ku, C. C. Lee, D. S. Ellis, B. K. Cho, A. H. Said, Y. Shvyd’ko, and Y. J. Kim, Spin-split conduction band in EuB6 and tuning of half-metallicity with external stimuli, Phys. Rev. B 87(15), 155104 (2013)

    Article  ADS  Google Scholar 

  198. S. Süllow, I. Prasad, M. C. Aronson, J. L. Sarrao, Z. Fisk, D. Hristova, A. H. Lacerda, M. F. Hundley, A. Vigliante, and D. Gibbs, Structure and magnetic order of EuB6, Phys. Rev. B 57(10), 5860 (1998)

    Article  ADS  Google Scholar 

  199. M. L. Brooks, T. Lancaster, S. J. Blundell, W. Hayes, F. L. Pratt, and Z. Fisk, Magnetic phase separation in EuB6 detected by muon spin rotation, Phys. Rev. B 70(2), 020401 (2004)

    Article  ADS  Google Scholar 

  200. L. Degiorgi, E. Felder, H. R. Ott, J. L. Sarrao, and Z. Fisk, Low-temperature anomalies and ferromagnetism of EuB6, Phys. Rev. Lett. 79(25), 5134 (1997)

    Article  ADS  Google Scholar 

  201. C. N. Guy, S. von Molnar, J. Etourneau, and Z. Fisk, Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6, Solid State Commun. 33(10), 1055 (1980)

    Article  ADS  Google Scholar 

  202. P. Nyhus, S. Yoon, M. Kauffman, S. L. Cooper, Z. Fisk, and J. Sarrao, Spectroscopic study of bound magnetic polaron formation and the metal-semiconductor transition in EuB6, Phys. Rev. B 56(5), 2717 (1997)

    Article  ADS  Google Scholar 

  203. G. Beaudin, L. M. Fournier, A. D. Bianchi, M. Nicklas, M. Kenzelmann, M. Laver, and W. Witczak-Krempa, Possible quantum nematic phase in a colossal magnetoresistance material, Phys. Rev. B 105(3), 035104 (2022)

    Article  ADS  Google Scholar 

  204. W. L. Liu, X. Zhang, S. M. Nie, Z. T. Liu, X. Y. Sun, H. Y. Wang, J. Y. Ding, Q. Jiang, L. Sun, F. H. Xue, Z. Huang, H. Su, Y. C. Yang, Z. C. Jiang, X. L. Lu, J. Yuan, S. Cho, J. S. Liu, Z. H. Liu, M. Ye, S. L. Zhang, H. M. Weng, Z. Liu, Y. F. Guo, Z. J. Wang, and D. W. Shen, Spontaneous ferromagnetism induced topological transition in EuB6, Phys. Rev. Lett. 129(16), 166402 (2022)

    Article  ADS  Google Scholar 

  205. Q. Zeng, C. Yi, J. Shen, B. Wang, H. Wei, Y. Shi, and E. Liu, Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6, Appl. Phys. Lett. 121(16), 162405 (2022)

    Article  ADS  Google Scholar 

  206. B. Chen, J. H. Yang, H. D. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, and M. H. Fang, Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2, J. Phys. Soc. Jpn. 82(12), 124711 (2013)

    Article  ADS  Google Scholar 

  207. Y. Zhang, H. Lu, X. Zhu, S. Tan, W. Feng, Q. Liu, W. Zhang, Q. Chen, Y. Liu, X. Luo, D. Xie, L. Luo, Z. Zhang, and X. Lai, Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2, Sci. Adv. 4(1), eaao6791 (2018)

    Article  ADS  Google Scholar 

  208. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)

    Article  ADS  Google Scholar 

  209. X. Lin and J. Ni, Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100(8), 085403 (2019)

    Article  ADS  Google Scholar 

  210. K. Kim, J. Seo, E. Lee, K. T. Ko, B. S. Kim, B. G. Jang, J. M. Ok, J. Lee, Y. J. Jo, W. Kang, J. H. Shim, C. Kim, H. W. Yeom, B. Il Min, B. J. Yang, and J. S. Kim, Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal, Nat. Mater. 17(9), 794 (2018)

    Article  ADS  Google Scholar 

  211. H. J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, and R. K. Kremer, Fe3GeTe2 and Ni3GeTe2 — two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties, Eur. J. Inorg. Chem. 2006(8), 1561 (2006)

    Article  Google Scholar 

  212. J. Yi, H. Zhuang, Q. Zou, Z. Wu, G. Cao, S. Tang, S. A. Calder, P. R. C. Kent, D. Mandrus, and Z. Gai, Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2, 2D Mater. 4, 011005 (2016)

    Article  Google Scholar 

  213. Y. Wang, C. Xian, J. Wang, B. Liu, L. Ling, L. Zhang, L. Cao, Z. Qu, and Y. Xiong, Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2, Phys. Rev. B 96(13), 134428 (2017)

    Article  ADS  Google Scholar 

  214. J. Ke, M. Yang, W. Xia, H. Zhu, C. Liu, R. Chen, C. Dong, W. Liu, M. Shi, Y. Guo, and J. Wang, Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2, J. Phys.: Condens. Matter 32(40), 405805 (2020)

    Google Scholar 

  215. H. Feng, Y. Li, Y. Shi, H. Y. Xie, Y. Li, and Y. Xu, Resistance anomaly and linear magnetoresistance in thin flakes of itinerant ferromagnet Fe3GeTe2, Chin. Phys. Lett. 39(7), 077501 (2022)

    Article  ADS  Google Scholar 

  216. J. Xu, W. A. Phelan, and C. L. Chien, Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano Lett. 19(11), 8250 (2019)

    Article  ADS  Google Scholar 

  217. Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J. H. Chu, and X. Xu, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17(9), 778 (2018)

    Article  ADS  Google Scholar 

  218. Q. Li, M. Yang, C. Gong, R. V. Chopdekar, A. T. N’Diaye, J. Turner, G. Chen, A. Scholl, P. Shafer, E. Arenholz, A. K. Schmid, S. Wang, K. Liu, N. Gao, A. S. Admasu, S. W. Cheong, C. Hwang, J. Li, F. Wang, X. Zhang, and Z. Qiu, Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature, Nano Lett. 18(9), 5974 (2018)

    Article  ADS  Google Scholar 

  219. C. Tan, J. Lee, S. G. Jung, T. Park, S. Albarakati, J. Partridge, M. R. Field, D. G. McCulloch, L. Wang, and C. Lee, Hard magnetic properties in nanoflake van der Waals Fe3GeTe2, Nat. Commun. 9(1), 1554 (2018)

    Article  ADS  Google Scholar 

  220. X. Wang, J. Tang, X. Xia, C. He, J. Zhang, Y. Liu, C. Wan, C. Fang, C. Guo, W. Yang, Y. Guang, X. Zhang, H. Xu, J. Wei, M. Liao, X. Lu, J. Feng, X. Li, Y. Peng, H. Wei, R. Yang, D. Shi, X. Zhang, Z. Han, Z. Zhang, G. Zhang, G. Yu, and X. Han, Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2, Sci. Adv. 5(8), eaaw8904 (2019)

    Article  ADS  Google Scholar 

  221. S. Y. Park, D. S. Kim, Y. Liu, J. Hwang, Y. Kim, W. Kim, J. Y. Kim, C. Petrovic, C. Hwang, S. K. Mo, H. J. Kim, B. C. Min, H. C. Koo, J. Chang, C. Jang, J. W. Choi, and H. Ryu, Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping, Nano Lett. 20(1), 95 (2020)

    Article  ADS  Google Scholar 

  222. H. Wang, Y. Liu, P. Wu, W. Hou, Y. Jiang, X. Li, C. Pandey, D. Chen, Q. Yang, H. Wang, D. Wei, N. Lei, W. Kang, L. Wen, T. Nie, W. Zhao, and K. L. Wang, Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator, ACS Nano 14(8), 10045 (2020)

    Article  Google Scholar 

  223. I. K. Park, C. Gong, K. Kim, and G. Lee, Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2, Phys. Rev. B 105(1), 014406 (2022)

    Article  ADS  Google Scholar 

  224. H. P. Wang, D. S. Wu, Y. G. Shi, and N. L. Wang, Anisotropic transport and optical spectroscopy study on antiferromagnetic triangular lattice EuCd2As2: An interplay between magnetism and charge transport properties, Phys. Rev. B 94(4), 045112 (2016)

    Article  ADS  Google Scholar 

  225. M. C. Rahn, J. R. Soh, S. Francoual, L. S. I. Veiga, J. Strempfer, J. Mardegan, D. Y. Yan, Y. F. Guo, Y. G. Shi, and A. T. Boothroyd, Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2, Phys. Rev. B 97(21), 214422 (2018)

    Article  ADS  Google Scholar 

  226. K. M. Taddei, L. Yin, L. D. Sanjeewa, Y. Li, J. Xing, C. dela Cruz, D. Phelan, A. S. Sefat, and D. S. Parker, Single pair of Weyl nodes in the spin-canted structure of EuCd2As2, Phys. Rev. B 105(14), L140401 (2022)

    Article  ADS  Google Scholar 

  227. J. Ma, H. Wang, S. Nie, C. Yi, Y. Xu, H. Li, J. Jandke, W. Wulfhekel, Y. Huang, D. West, P. Richard, A. Chikina, V. N. Strocov, J. Mesot, H. Weng, S. Zhang, Y. Shi, T. Qian, M. Shi, and H. Ding, Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2, Adv. Mater. 32(14), 1907565 (2020)

    Article  Google Scholar 

  228. X. Cao, J. X. Yu, P. Leng, C. Yi, X. Chen, Y. Yang, S. Liu, L. Kong, Z. Li, X. Dong, Y. Shi, M. Bibes, R. Peng, J. Zang, and F. Xiu, Giant nonlinear anomalous Hall effect induced by spin-dependent band structure evolution, Phys. Rev. Res. 4(2), 023100 (2022)

    Article  Google Scholar 

  229. I. Schellenberg, U. Pfannenschmidt, M. Eul, C. Schwickert, and R. Pöttgen, A 121Sb and 151Eu Mössbauer spectroscopic investigation of EuCd2X2 (X = P, As, Sb) and YbCd2Sb2, Z. Anorg. Allg. Chem. 637(12), 1863 (2011)

    Article  Google Scholar 

  230. L. L. Wang, N. H. Jo, B. Kuthanazhi, Y. Wu, R. J. McQueeney, A. Kaminski, and P. C. Canfield, Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2, Phys. Rev. B 99(24), 245147 (2019)

    Article  ADS  Google Scholar 

  231. J. R. Soh, C. Donnerer, K. M. Hughes, E. Schierle, E. Weschke, D. Prabhakaran, and A. T. Boothroyd, Magnetic and electronic structure of the layered rare-earth pnictide EuCd2Sb2, Phys. Rev. B 98(6), 064419 (2018)

    Article  ADS  Google Scholar 

  232. J. Krishna, T. Nautiyal, and T. Maitra, First-principles study of electronic structure, transport, and optical properties of EuCd2As2, Phys. Rev. B 98(12), 125110 (2018)

    Article  ADS  Google Scholar 

  233. Y. Sun, Y. Li, S. Li, C. Yi, H. Deng, X. Du, L. Liu, C. Zhu, Y. Li, Z. Wang, H. Mao, Y. Shi, and R. Wu, Experimental evidence for field-induced metamagnetic transition of EuCd2As2, J. Rare Earths 40(10), 1606 (2022)

    Article  Google Scholar 

  234. G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, and K. Yao, Dirac semimetal in type-IV magnetic space groups, Phys. Rev. B 98(20), 201116 (2018)

    Article  ADS  Google Scholar 

  235. F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4(6), eaat0346 (2018)

    Article  ADS  Google Scholar 

  236. J. R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C. Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy, Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y. Chen, A. I. Coldea, and A. T. Boothroyd, Ideal Weyl semimetal induced by magnetic exchange, Phys. Rev. B 100(20), 201102 (2019)

    Article  ADS  Google Scholar 

  237. L. A. Fenner, A. A. Dee, and A. S. Wills, Non-collinearity and spin frustration in the itinerant Kagomé ferromagnet Fe3Sn2, J. Phys.: Condens. Matter 21(45), 452202 (2009)

    ADS  Google Scholar 

  238. L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, Massive Dirac fermions in a ferromagnetic Kagomé metal, Nature 555(7698), 638 (2018)

    Article  ADS  Google Scholar 

  239. B. Malaman, B. Roques, A. Courtois, and J. Protas, Structure cristalline du stannure de fer Fe3Sn2, Acta Crystallogr. B 32(5), 1348 (1976)

    Article  ADS  Google Scholar 

  240. G. L. Caer, B. Malaman, and B. Roques, Mossbauer effect study of Fe3Sn2, J. Phys. F Met. Phys. 8(2), 323 (1978)

    Article  ADS  Google Scholar 

  241. B. Malaman, D. Fruchart, and G. L. Caer, Magnetic properties of Fe3Sn2 (II): Neutron diffraction study (and Mossbauer effect), J. Phys. F Met. Phys. 8(11), 2389 (1978)

    Article  ADS  Google Scholar 

  242. G. Le Caer, B. Malaman, L. Haggstrom, and T. Ericsson, Magnetic properties of Fe3Sn2 (III): A 119Sn Moss-bauer study, J. Phys. F Met. Phys. 9(9), 1905 (1979)

    Article  ADS  Google Scholar 

  243. Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent ferromagnetic ordering in Fe3Sn2 Kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018)

    Article  ADS  Google Scholar 

  244. J. X. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang, B. Lian, C. Xiang, I. Belopolski, H. Zheng, T. A. Cochran, S. Y. Xu, G. Bian, K. Liu, T. R. Chang, H. Lin, Z. Y. Lu, Z. Wang, S. Jia, W. Wang, and M. Z. Hasan, Giant and anisotropic many-body spin—orbit tunability in a strongly correlated Kagomé magnet, Nature 562(7725), 91 (2018)

    Article  ADS  Google Scholar 

  245. Q. Wang, S. Sun, X. Zhang, F. Pang, and H. Lei, Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer Kagomé lattice, Phys. Rev. B 94(7), 075135 (2016)

    Article  ADS  Google Scholar 

  246. Z. P. Hou, B. Ding, H. Li, G. Z. Xu, W. H. Wang, and G. H. Wu, Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device, Acta Phys. Sin. 67(13), 137509 (2018)

    Article  Google Scholar 

  247. H. Li, B. Ding, J. Chen, Z. Li, Z. Hou, E. Liu, H. Zhang, X. Xi, G. Wu, and W. Wang, Large topological Hall effect in a geometrically frustrated Kagomé magnet Fe3Sn2, Appl. Phys. Lett. 114(19), 192408 (2019)

    Article  ADS  Google Scholar 

  248. C. D. O’Neill, A. S. Wills, and A. D. Huxley, Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe3Sn2, Phys. Rev. B 100(17), 174420 (2019)

    Article  ADS  Google Scholar 

  249. Q. Wang, Q. Yin, and H. Lei, Giant topological Hall effect of ferromagnetic Kagomé metal Fe3Sn2, Chin. Phys. B 29(1), 017101 (2020)

    Article  ADS  Google Scholar 

  250. Z. Hou, W. Ren, B. Ding, G. Xu, Y. Wang, B. Yang, Q. Zhang, Y. Zhang, E. Liu, F. Xu, W. Wang, G. Wu, X. Zhang, B. Shen, and Z. Zhang, Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagomé magnet with uniaxial magnetic anisotropy, Adv. Mater. 29(29), 1701144 (2017)

    Article  Google Scholar 

  251. Z. Hou, Q. Zhang, G. Xu, C. Gong, B. Ding, Y. Wang, H. Li, E. Liu, F. Xu, H. Zhang, Y. Yao, G. Wu, X. X. Zhang, and W. Wang, Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe, Nano Lett. 18(2), 1274 (2018)

    Article  ADS  Google Scholar 

  252. L. Gao, S. Shen, Q. Wang, W. Shi, Y. Zhao, C. Li, W. Cao, C. Pei, J. Y. Ge, G. Li, J. Li, Y. Chen, S. Yan, and Y. Qi, Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn Kagomé lattice, Appl. Phys. Lett. 119(9), 092405 (2021)

    Article  ADS  Google Scholar 

  253. J. X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H. J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G. Chang, I. Belopolski, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, B. Swidler, H. Zhou, H. Lin, T. Neupert, Z. Wang, N. Yao, T. R. Chang, S. Jia, and M. Zahid Hasan, Quantum-limit Chern topological magnetism in TbMn6Sn6, Nature 583(7817), 533 (2020)

    Article  ADS  Google Scholar 

  254. D. Chen, C. Le, C. Fu, H. Lin, W. Schnelle, Y. Sun, and C. Felser, Large anomalous Hall effect in the Kagomé ferromagnet LiMn6Sn6, Phys. Rev. B 103(14), 144410 (2021)

    Article  ADS  Google Scholar 

  255. B. C. El Idrissi, G. Venturini, and B. Malaman, Crystal structures of RFe6Sn6 (R = Sc, Y, Gd—Tm, Lu) rare-earth iron stannides, Mater. Res. Bull. 26(12), 1331 (1991)

    Article  Google Scholar 

  256. G. Venturini, B. C. E. Idrissi, and B. Malaman, Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd—Tm, Lu) compounds with HfFe6Ge6 type structure, J. Magn. Magn. Mater. 94(1–2), 35 (1991)

    Article  ADS  Google Scholar 

  257. N. J. Ghimire, R. L. Dally, L. Poudel, D. C. Jones, D. Michel, N. T. Magar, M. Bleuel, M. A. McGuire, J. S. Jiang, J. F. Mitchell, J. W. Lynn, and I. I. Mazin, Competing magnetic phases and fluctuation-driven scalar spin chirality in the Kagomé metal YMn6Sn6, Sci. Adv. 6(51), eabe2680 (2020)

    Article  ADS  Google Scholar 

  258. W. Ma, X. Xu, J. X. Yin, H. Yang, H. Zhou, Z. J. Cheng, Y. Huang, Z. Qu, F. Wang, M. Z. Hasan, and S. Jia, Rare earth engineering in RMn6Sn6 (R = Gd—Tm, Lu) topological Kagomé magnets, Phys. Rev. Lett. 126(24), 246602 (2021)

    Article  ADS  Google Scholar 

  259. M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei, Z. Yin, and S. Wang, Dirac cone, flat band and saddle point in Kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)

    Article  ADS  Google Scholar 

  260. X. Gu, C. Chen, W. S. Wei, L. L. Gao, J. Y. Liu, X. Du, D. Pei, J. S. Zhou, R. Z. Xu, Z. X. Yin, W. X. Zhao, Y. D. Li, C. Jozwiak, A. Bostwick, E. Rotenberg, D. Backes, L. S. I. Veiga, S. Dhesi, T. Hesjedal, G. van der Laan, H. F. Du, W. J. Jiang, Y. P. Qi, G. Li, W. J. Shi, Z. K. Liu, Y. L. Chen, and L. X. Yang, Robust Kagomé electronic structure in the topological quantum magnets XMn6Sn6 (X=Dy, Tb, Gd, Y), Phys. Rev. B 105(15), 155108 (2022)

    Article  ADS  Google Scholar 

  261. S. Roychowdhury, A. M. Ochs, S. N. Guin, K. Samanta, J. Noky, C. Shekhar, M. G. Vergniory, J. E. Goldberger, and C. Felser, Large room temperature anomalous transverse thermoelectric effect in Kagomé antiferromagnet YMn6Sn6, Adv. Mater. 34(40), e2201350 (2022)

    Article  Google Scholar 

  262. G. Dhakal, F. Cheenicode Kabeer, A. K. Pathak, F. Kabir, N. Poudel, R. Filippone, J. Casey, A. Pradhan Sakhya, S. Regmi, C. Sims, K. Dimitri, P. Manfrinetti, K. Gofryk, P. M. Oppeneer, and M. Neupane, Anisotropically large anomalous and topological Hall effect in a Kagomé magnet, Phys. Rev. B 104(16), L161115 (2021)

    Article  ADS  Google Scholar 

  263. Q. Wang, K. J. Neubauer, C. Duan, Q. Yin, S. Fujitsu, H. Hosono, F. Ye, R. Zhang, S. Chi, K. Krycka, H. Lei, and P. Dai, Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic Kagomé antiferromagnetic compound YMn6Sn6, Phys. Rev. B 103, 014416 (2021)

    Article  ADS  Google Scholar 

  264. F. Kabir, R. Filippone, G. Dhakal, Y. Lee, N. Poudel, J. Casey, A. P. Sakhya, S. Regmi, R. Smith, P. Manfrinetti, L. Ke, K. Gofryk, M. Neupane, and A. K. Pathak, Unusual magnetic and transport properties in HoMn6Sn6 Kagomé magnet, Phys. Rev. Mater. 6(6), 064404 (2022)

    Article  Google Scholar 

  265. J. Lee and E. Mun, 0, Anisotropic magnetic property of single crystals RV6Sn6 (R=Y, Gd—Tm, Lu), Phys. Rev. Mater. 6(8), 083401 (2022)

    Article  Google Scholar 

  266. S. Peng, Y. Han, G. Pokharel, J. Shen, Z. Li, M. Hashimoto, D. Lu, B. R. Ortiz, Y. Luo, H. Li, M. Guo, B. Wang, S. Cui, Z. Sun, Z. Qiao, S. D. Wilson, and J. He, Realizing Kagomé band structure in two-dimensional Kagomé surface states of RV6Sn6 (R=Gd, Ho), Phys. Rev. Lett. 127(26), 266401 (2021)

    Article  ADS  Google Scholar 

  267. Y. Hu, X. Wu, Y. Yang, S. Gao, N. C. Plumb, A. P. Schnyder, W. Xie, J. Ma, and M. Shi, Tunable topological Dirac surface states and van Hove singularities in Kagomé metal GdV6Sn6, Sci. Adv. 8, eadd2024 (2022)

    Article  Google Scholar 

  268. E. Cheng, W. Xia, X. Shi, H. Fang, C. Wang, C. Xi, S. Xu, D. C. Peets, L. Wang, H. Su, L. Pi, W. Ren, X. Wang, N. Yu, Y. Chen, W. Zhao, Z. Liu, Y. Guo, and S. Li, Magnetism-induced topological transition in EuAs3, Nat. Commun. 12(1), 6970 (2021)

    Article  ADS  Google Scholar 

  269. W. Bauhofer, M. Wittmann, and H. G. v Schnering, Structure, electrical and magnetic properties of CaAs3, SrAs3, BaAs3 and EuAs3, J. Phys. Chem. Solids 42(8), 687 (1981)

    Article  ADS  Google Scholar 

  270. T. Chattopadhyay, H. G. v. Schnering, and P. J. Brown, Neutron diffraction study of the magnetic ordering in EuAs3, J. Magn. Magn. Mater. 28(3), 247 (1982)

    Article  ADS  Google Scholar 

  271. T. Chattopadhyay and P. J. Brown, Field-induced transverse-sine-wave-to-longitudinal-sine-wave transition in EuAs3, Phys. Rev. B 38(1), 795 (1988)

    Article  ADS  Google Scholar 

  272. T. Chatterji, K. D. Liß, T. Tschentscher, B. Janossy, J. Strempfer, and T. Brückel, High-energy non-resonant X-ray magnetic scattering from EuAs3, Solid State Commun. 131(11), 713 (2004)

    Article  ADS  Google Scholar 

  273. T. Chatterji and W. Henggeler, µSR investigation of the magnetic ordering in EuAs3, Solid State Commun. 132(9), 617 (2004)

    Article  ADS  Google Scholar 

  274. W. Bauhofer and K. A. McEwen, Anisotropic magnetoresistance of the semimetallic antiferromagnet EuAs3, Phys. Rev. B 43(16), 13450 (1991)

    Article  ADS  Google Scholar 

  275. L. Elcoro, B. J. Wieder, Z. Song, Y. Xu, B. Bradlyn, and B. A. Bernevig, Magnetic topological quantum chemistry, Nat. Commun. 12(1), 5965 (2021)

    Article  ADS  Google Scholar 

  276. Y. Xu, L. Elcoro, Z. D. Song, B. J. Wieder, M. G. Vergniory, N. Regnault, Y. Chen, C. Felser, and B. A. Bernevig, High-throughput calculations of magnetic topological materials, Nature 586(7831), 702 (2020)

    Article  ADS  Google Scholar 

  277. W. Haruki, P. H. Chun, and V. Ashvin, Structure and topology of band structures in the 1651 magnetic space groups, Sci. Adv. 4, eaat8685 (2018)

    Article  Google Scholar 

  278. J. Gao, Z. Guo, H. Weng, and Z. Wang, Magnetic band representations, Fu—Kane-like symmetry indicators, and magnetic topological materials, Phys. Rev. B 106(3), 035150 (2022)

    Article  ADS  Google Scholar 

  279. K. Choudhary, K. F. Garrity, N. J. Ghimire, N. Anand, and F. Tavazza, High-throughput search for magnetic topological materials using spin—orbit spillage, machine learning, and experiments, Phys. Rev. B 103(15), 155131 (2021)

    Article  ADS  Google Scholar 

  280. A. Bouhon, G. F. Lange, and R. J. Slager, Topological correspondence between magnetic space group representations and subdimensions, Phys. Rev. B 103(24), 245127 (2021)

    Article  ADS  Google Scholar 

  281. J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig, and C. Felser, Axionic charge-density wave in the Weyl semimetal (TaSe4)2I, Nature 575(7782), 315 (2019)

    Article  ADS  Google Scholar 

  282. L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T. Jungwirth, Anomalous Hall antiferromagnets, Nat. Rev. Mater. 7(6), 482 (2022)

    Article  ADS  Google Scholar 

  283. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging research landscape of altermagnetism, Phys. Rev. X 12(4), 040501 (2022)

    Google Scholar 

  284. L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry, Phys. Rev. X 12(3), 031042 (2022)

    Google Scholar 

  285. N. J. Ghimire, A. S. Botana, J. S. Jiang, J. Zhang, Y. S. Chen, and J. F. Mitchell, Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6, Nat. Commun. 9(1), 3280 (2018)

    Article  ADS  Google Scholar 

  286. L. Šmejkal, A. B. Hellenes, R. González-Hernández, J. Sinova, and T. Jungwirth, Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin—momentum coupling, Phys. Rev. X 12(1), 011028 (2022)

    Google Scholar 

  287. Z. Feng, X. Zhou, L. Šmejkal, L. Wu, Z. Zhu, H. Guo, R. González-Hernández, X. Wang, H. Yan, P. Qin, X. Zhang, H. Wu, H. Chen, Z. Meng, L. Liu, Z. Xia, J. Sinova, T. Jungwirth, and Z. Liu, An anomalous Hall effect in altermagnetic ruthenium dioxide, Nat. Electron. 5(11), 735 (2022)

    Article  Google Scholar 

  288. B. Schrunk, Y. Kushnirenko, B. Kuthanazhi, J. Ahn, L. L. Wang, E. O’Leary, K. Lee, A. Eaton, A. Fedorov, R. Lou, V. Voroshnin, O. J. Clark, J. Sanchez-Barriga, S. L. Bud’ko, R. J. Slager, P. C. Canfield, and A. Kaminski, Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet, Nature 603(7902), 610 (2022)

    Article  ADS  Google Scholar 

  289. S. Karube, T. Tanaka, D. Sugawara, N. Kadoguchi, M. Kohda, and J. Nitta, Observation of spin-splitter torque in collinear antiferromagnetic RuO2, Phys. Rev. Lett. 129(13), 137201 (2022)

    Article  ADS  Google Scholar 

  290. H. Bai, L. Han, X. Y. Feng, Y. J. Zhou, R. X. Su, Q. Wang, L. Y. Liao, W. X. Zhu, X. Z. Chen, F. Pan, X. L. Fan, and C. Song, Observation of spin splitting torque in a collinear antiferromagnet RuO2, Phys. Rev. Lett. 128(19), 197202 (2022)

    Article  ADS  Google Scholar 

  291. D. F. Shao, S. H. Zhang, M. Li, C. B. Eom, and E. Y. Tsymbal, Spin-neutral currents for spintronics, Nat. Commun. 12(1), 7061 (2021)

    Article  ADS  Google Scholar 

  292. R. González-Hernández, L. Smejkal, K. Vyborny, Y. Yahagi, J. Sinova, T. Jungwirth, and J. Zelezny, Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism, Phys. Rev. Lett. 126(12), 127701 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403700 and 2020YFA0308900), the National Natural Science Foundation of China (NSFC) (Grant Nos. 12074163, 12074161, and 11504159), NSFC Guangdong (No. 2016A030313650), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2022B1515130005 and 2021B1515130007), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant Nos. 2019ZT08C044 and 2016ZT06D348), Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000). C.C. acknowledges the assistance of SUSTech Core Research Facilities. C. L. acknowledges additional support from the Highlight Project (No. PHYS-HL-2020-1) of the College of Science, SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Liu or Chaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, F., Zeng, M. et al. Intrinsic magnetic topological materials. Front. Phys. 18, 21304 (2023). https://doi.org/10.1007/s11467-022-1250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1250-6

Keywords

Navigation