Skip to main content

Magnetic Exchange Interactions

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials
  • 6310 Accesses

Abstract

The electrostatic repulsion between electrons, combined with quantum mechanics and the Pauli principle, yields the atomic-scale exchange interaction. Intra-atomic exchange determines the size of the atomic magnetic moments. Interatomic exchange ensures long-range magnetic order and determines the ordering (Curie or Néel) temperature. It also yields spin waves and the exchange stiffness responsible for the finite extension of magnetic domains and domain walls. Intra-atomic exchange determines the size of the atomic magnetic moments. Positive and negative exchange constants mean parallel (ferromagnetic) and antiparallel (antiferromagnetic) spin alignments. As a rule, direct exchange and Coulomb interaction favor ferromagnetic spin structures, whereas interatomic hopping tends to be ferromagnetic and is often the main consideration. The basic interatomic exchange mechanisms include superexchange, double exchange, Ruderman-Kittel exchange, and itinerant exchange. Exchange interactions may also be classified according to specific models or phenomena. Examples are Heisenberg exchange, Stoner exchange, Hubbard interactions, anisotropic exchange, Dzyaloshinski-Moriya exchange, and antiferromagnetic spin fluctuations responsible for high-temperature superconductivity. From the viewpoint of fundamental physics, exchange interactions differ by the role of electron correlations, the strongly correlated Heisenberg exchange and weakly correlated itinerant exchange at the opposite ends of the spectrum. Correlations are also important for the understanding of some exotic exchange phenomena, such as frustration and quantum spin liquid behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928)

    Article  ADS  MATH  Google Scholar 

  2. Pauling, L., Wilson, E.B.: Introduction to Quantum Mechanics. McGraw-Hill, New York (1935)

    Google Scholar 

  3. Jones, W., March, N.H.: Theoretical Solid State Physics I. Wiley & Sons, London (1973)

    Google Scholar 

  4. Skomski, R.: Simple Models of Magnetism. University Press, Oxford (2008)

    Book  Google Scholar 

  5. Stoner, E.C.: Collective electron ferromagnetism. Proc. Roy. Soc. A. 165, 372–414 (1938)

    ADS  MATH  Google Scholar 

  6. Slater, J.C.: Ferromagnetism in the band theory. Rev. Mod. Phys. 25, 199–210 (1953)

    Article  ADS  MATH  Google Scholar 

  7. Stollhoff, G., Oleś, A.M., Heine, V.: Stoner exchange interaction in transition metals. Phys. Rev. B. 41, 7028–7041 (1990)

    Article  ADS  Google Scholar 

  8. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders, Philadelphia (1976)

    MATH  Google Scholar 

  9. Fulde, P.: Electron Correlations in Molecules and Solids. Springer, Berlin (1991)

    Book  Google Scholar 

  10. Coulson, C.A., Fischer, I.: Notes on the molecular orbital treatment of the hydrogen molecule. Philos. Mag. 40, 386–393 (1949)

    Article  MATH  Google Scholar 

  11. Senatore, G., March, N.H.: Recent progress in the field of electron correlation. Rev. Mod. Phys. 66, 445–479 (1994)

    Article  ADS  Google Scholar 

  12. Avella, A., Manchini, F. (eds.): Strongly Correlated Systems: Theoretical Methods. Springer, Berlin (2012)

    Google Scholar 

  13. Avella, A., Manchini, F. (eds.): Strongly Correlated Systems: Numerical Methods. Springer, Berlin (2013)

    Google Scholar 

  14. Metzner, W., Vollhardt, D.: Correlated lattice fermions in d = ∞ dimensions. Phys. Rev. Lett. 62, 324–327 (1989)

    Article  ADS  Google Scholar 

  15. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory", J. Phys.: Condens. Matter 9, 7359–7367 (1997)

    Google Scholar 

  16. Karbach, M., Müller, G.: Introduction to the Bethe ansatz I. Comput. Phys. 11, 36–44 (1997)

    Article  ADS  Google Scholar 

  17. Karbach, M., Hu, K., Müller, G.: Introduction to the Bethe ansatz II. Comput. Phys. 12, 565–573 (1998)

    Article  ADS  Google Scholar 

  18. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. London Ser. A. 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  19. Gutzwiller, M.C.: Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett. 10, 159–162 (1963)

    Article  ADS  Google Scholar 

  20. Şaşıoğlu, E., Friedrich, C., Blügel, S.: Effective Coulomb interaction in transition metals from constrained random-phase approximation. Phys. Rev. B. 83., 121101R-1-4 (2011)

    Google Scholar 

  21. Zaanen, J., Sawatzky, G.A., Allen, J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985)

    Article  ADS  Google Scholar 

  22. Brinkman, W.F., Rice, T.M.: Application of Gutzwiller's Variational method to the metal-insulator transition. Phys. Rev. B. 2, 4302–4304 (1970)

    Article  ADS  Google Scholar 

  23. Hund, F.: Atomtheoretische Deutung des Magnetismus der seltenen Erden. Z. Phys. 33, 855–859 (1925)

    Article  ADS  MATH  Google Scholar 

  24. Herzberg, G.: Atomic Spectra and Atomic Structure. Dover, New York (1944)

    Google Scholar 

  25. Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. University Press, Cambridge (1959)

    MATH  Google Scholar 

  26. Taylor, K.N.R., Darby, M.I.: Physics of Rare Earth Solids. Chapman and Hall, London (1972)

    Google Scholar 

  27. Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley, New York (1963)

    Google Scholar 

  28. Anderson, P.W.: Exchange in insulators: Superexchange, direct exchange, and double exchange. In: Rado, G.T., Suhl, H. (eds.) Magnetism I, pp. 25–85. Academic Press, New York (1963)

    Chapter  Google Scholar 

  29. Mattis, D.C.: Theory of Magnetism. Harper and Row, New York (1965)

    Google Scholar 

  30. Skomski, R., Zhou, J., Zhang, J., Sellmyer, D.J.: Indirect exchange in dilute magnetic semiconductors. J. Appl. Phys. 99., 08D504-1-3 (2006)

    Google Scholar 

  31. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    Article  ADS  Google Scholar 

  32. Brueckner, K.A., Sawada, K.: Magnetic susceptibility of an electron gas at high density. Phys. Rev. 112, 328 (1958)

    Article  ADS  MATH  Google Scholar 

  33. Bloch, F.: Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Z. Physik. 57, 545–555 (1929)

    Article  ADS  MATH  Google Scholar 

  34. Janak, J.F.: Uniform susceptibilities of metallic elements. Phys. Rev. B. 16, 255–262 (1977)

    Article  ADS  Google Scholar 

  35. Wohlfarth, E.P.: Very weak itinerant Ferromagnets; application to ZrZn2. J. Appl. Phys. 39, 1061–1066 (1968)

    Article  ADS  Google Scholar 

  36. Mohn, P.: Magnetism in the solid state. Springer, Berlin (2003)

    Google Scholar 

  37. Mohn, P., Wohlfarth, E.P.: The curie temperature of the ferromagnetic transition metals and their compounds. J. Phys. F. 17, 2421–2430 (1987)

    Article  ADS  Google Scholar 

  38. Balasubramanian, B., Manchanda, P., Skomski, R., Mukherjee, P., Das, B., George, T.A., Hadjipanayis, G.C., Sellmyer, D.J.: Unusual spin correlations in a nanomagnet. Appl. Phys. Lett. 106., 242401-1-5 (2015)

    Google Scholar 

  39. Sommerfeld, A., Bethe, H.A.: Elektronentheorie der Metalle.", Ferromagnetism. In: Flügge, S. (ed.) Handbuch der Physik, Vol. 24/II, pp. 334–620. Springer, Berlin (1933)

    Google Scholar 

  40. Cardias, R., Szilva, A., Bergman, A., Di Marco, I., Katsnelson, M.I., Lichtenstein, A.I., Nordström, L., Klautau, A.B., Eriksson, O., Kvashnin, Y.O.: The Bethe-Slater Curve Revisited; New Insights from Electronic Structure Theory. Sci. Rep. 7, 4058-1-11 (2017)

    ADS  Google Scholar 

  41. Skomski, R., Coey, J.M.D.: Permanent magnetism. Institute of Physics, Bristol (1999)

    Google Scholar 

  42. Sutton, A.P.: Electronic structure of materials. Oxford University Press (1993)

    Google Scholar 

  43. Coey, J.M.D.: New permanent magnets; manganese compounds. J. Phys.: Condens. Matter. 26, 064211-1-6 (2014)

    Google Scholar 

  44. Snow, R.J., Bhatkar, H., N'Diaye, A.T., Arenholz, E., Idzerda, Y.U.: Large moments in bcc FexCoyMnz ternary alloy thin films. Appl. Phys. Lett. 112, 072403 (2018)

    Article  ADS  Google Scholar 

  45. Kashyap, A., Pathak, R., Sellmyer, D.J., Skomski, R.: Theory of Mn-based high-magnetization alloys. IEEE Trans. Magn. 54, 2102106-1-6 (2018)

    Google Scholar 

  46. Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B. 90, 214420-1-12 (2014)

    Article  ADS  Google Scholar 

  47. Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A., Sellmyer, D.J.: Predicting the future of permanent-magnet materials. IEEE Trans. Magn. 49, 3215–3220 (2013)

    Article  ADS  Google Scholar 

  48. Anderson, P.W.: Concepts in Solids: Lectures on the Theory of Solids. W. A, Benjamin, New York (1965)

    Google Scholar 

  49. Kohn, W.: Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999)

    Article  ADS  Google Scholar 

  50. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  51. Runge, E., Zwicknagl, G.: Electronic structure calculations and strong correlations: a model study. Ann. Physik. 5, 333–354 (1996)

    ADS  Google Scholar 

  52. Skomski, R., Manchanda, P., Kashyap, A.: Correlations in rare-earth transition-metal permanent magnets. J. Appl. Phys. 117, 17C740-1-4 (2015)

    Article  Google Scholar 

  53. Lieb, E.H.: Density functionals for coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  54. Smart, J.S.: Effective Field Theories of Magnetism. Saunders, Philadelphia (1966)

    Book  Google Scholar 

  55. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter. 9, 767–808 (1997)

    ADS  Google Scholar 

  56. Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V.A.: Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987)

    Article  ADS  Google Scholar 

  57. Skomski, R., Balamurugan, B., Manchanda, P., Chipara, M., Sellmyer, D.J.: Size dependence of nanoparticle magnetization. IEEE Trans. Magn. 53, 1–7 (2017)

    Article  Google Scholar 

  58. Kondo, J.: Resistance Minimum in Dilute magnetic Alloys. Progr. Theor. Phys. 32, 37–49 (1964)

    Article  ADS  Google Scholar 

  59. Wijn, H.P.J. (ed.): Magnetic properties of metals: d-elements, alloys, and compounds. Springer, Berlin (1991)

    Google Scholar 

  60. Yeomans, J.M.: Statistical mechanics of phase transitions. University Press, Oxford (1992)

    Google Scholar 

  61. Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  62. Duc, N.H., Hien, T.D., Givord, D., Franse, J.J.M., de Boer, F.R.: Exchange interactions in rare-earth transition-metal compounds. J. Magn. Magn. Mater. 124, 305–311 (1993)

    Article  ADS  Google Scholar 

  63. Kittel, C.: Introduction to Solid-State Physics. Wiley, New York (1986)

    MATH  Google Scholar 

  64. Kumar, P., Kashyap, A., Balamurugan, B., Shield, J.E., Sellmyer, D.J., Skomski, R.: Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements. J. Phys.: Condens. Matter. 26, 064209-1-8 (2014)

    Google Scholar 

  65. Coey, J.M.: Magnetism and magnetic materials. University Press, Cambridge (2010)

    Google Scholar 

  66. Fischer, K.-H., Hertz, A.J.: Spin glasses. University Press, Cambridge (1991)

    Book  Google Scholar 

  67. Moorjani, K., Coey, J.M.D.: Magnetic glasses. Elsevier, Amsterdam (1984)

    Google Scholar 

  68. Koehler, W.C.: Magnetic properties of rare-earth metals and alloys. J. Appl. Phys. 36, 1078–1087 (1965)

    Article  ADS  Google Scholar 

  69. Stevens, K.W.H.: A note on exchange interactions. Rev. Mod. Phys. 25, 166 (1953)

    Article  ADS  Google Scholar 

  70. Dzyaloshinsky, I.: A thermodynamic theory of 'weak' ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  71. Moriya, T.: Anisotropic Superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  72. Bak, P., Jensen, H.H.: Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C. 13, L881–L885 (1980)

    Article  ADS  Google Scholar 

  73. Skomski, R.: Nanomagnetics. J. Phys.: Condens. Matter. 15, R841–R896 (2003)

    ADS  Google Scholar 

  74. R. Skomski, J. Honolka, S. Bornemann, H. Ebert, and A. Enders, "Dzyaloshinski–Moriya micromagnetics of magnetic surface alloys", J. Appl. Phys. 105, 07D533-1-3 (2009)

    Google Scholar 

  75. Ullah, A., Balamurugan, B., Zhang, W., Valloppilly, S., Li, X.-Z., Pahari, R., Yue, L.-P., Sokolov, A., Sellmyer, D.J., Skomski, R.: Crystal structure and Dzyaloshinski–Moriya micromagnetics. IEEE Trans. Magn. 55, 7100305-1-5 (2019)

    Article  Google Scholar 

  76. Seki, S., Mochizuki, M.: Skyrmions in Magnetic Materials. Springer International, Cham (2016)

    Book  Google Scholar 

  77. Balasubramanian, B., Manchanda, P., Pahari, R., Chen, Z., Zhang, W., Valloppilly, S.R., Li, X., Sarella, A., Yue, L., Ullah, A., Dev, P., Muller, D.A., Skomski, R., Hadjipanayis, G.C., Sellmyer, D.J.: Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si. Phys. Rev. Lett. 124, 057201-1-6 (2020)

    Article  ADS  Google Scholar 

  78. Dubowik, J., Gościańska, I.: Micromagnetic approach to exchange Bias. Acta Phys. Pol A. 127, 147–152 (2015)

    Article  ADS  Google Scholar 

  79. Skomski, R., Kashyap, A., Zhou, J., Sellmyer, D.J.: Anisotropic Exchange. J. Appl. Phys. 97, 10B302-1-3 (2005)

    Article  Google Scholar 

  80. de Jongh, L.J., Miedema, A.R.: Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974)

    Article  ADS  Google Scholar 

  81. Bander, M., Mills, D.L.: Ferromagnetism of ultrathin films. Phys. Rev. B. 38, 12015–12018 (1988)

    Article  ADS  Google Scholar 

  82. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  ADS  MATH  Google Scholar 

  83. Binek, C.: Ising-Type Antiferromagnets: Model Systems in Statistical Physics and in the Magnetism of Exchange Bias. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  84. Sachdev, S.: Quantum Phase Transitions. University Press, Cambridge (1999)

    MATH  Google Scholar 

  85. Skomski, R.: On the Ising character of the quantum-phase transition in LiHoF4. AIP Adv. 6, 055704-1-5 (2016)

    Article  ADS  Google Scholar 

  86. Stinchcombe, R.B.: Ising model in a transverse field. I. Basic theory. J. Phys. C. 6, 2459–2483 (1973)

    Article  ADS  Google Scholar 

  87. Luttinger, J.M.: An exactly soluble model of a many-fermion system. J. of Math. Phys. 4, 1154–1162 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  88. Schofield, A.J.: Non-Fermi liquids. Contemporary Phys. 40, 95–115 (1999)

    Article  ADS  Google Scholar 

  89. Frost, A.A., Musulin, B.: A mnemonic device for molecular orbital energies. J. Chem. Phys. 21, 572–573 (1953)

    Article  ADS  Google Scholar 

  90. Balasubramanian, B., Manchanda, P., Pahari, R., Chen, Z., Zhang, W., Valloppilly, S.R., Li, X., Sarella, A., Yue, L., Ullah, A., Dev, P., Muller, D.A., Skomski, R., Hadjipanayis, G.C., Sellmyer, D.J.: Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si. Phys. Rev. Lett. 124, 057201-1-6 (2020)

    Article  ADS  Google Scholar 

  91. Mendels, P., Bert, F.: Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids. C. R. Phys. 17, 455–470 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This chapter has benefited from help in details by P. Manchanda and R. Pathak and from discussions with B. Balamurugan, C. Binek, X. Hong, Y. Idzerda, A. Kashyap, P. S. Kumar, D. Paudyal, T. Schrefl, D. J. Sellmyer, and A. Ullah. The underlying research in Nebraska has been supported by DOE BES (DE-FG02-04ER46152) NSF EQUATE (OIA-2044049), the NU Collaborative Initiative, HCC and NCMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Skomski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skomski, R. (2021). Magnetic Exchange Interactions. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_2

Download citation

Publish with us

Policies and ethics