Skip to main content
Log in

Elementary Excitations in Solid and Liquid 4He at the Melting Pressure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent discovery of a nonclassical rotational inertia (NCRI) in solid 4He below 0.2 K by Kim and Chan has revived great interest in the problem of supersolidity and initiated intensive study on the properties of solid 4He. A direct proof that the onset of NCRI corresponds to the supersolid transition would be the observation of a corresponding drop of the entropy of solid 4He below the transition temperature. We have measured the melting pressure of ultrapure 4He in the temperature range from 0.01 to 0.45 K with several single crystals grown at different pressures and with the accuracy of 0.5 μbar. In addition, supplementary measurements of the pressure in liquid 4He at constant volume have been performed, which allowed us to eliminate the contribution of the temperature-dependent properties of the pressure gauge from the measured melting pressure data. With the correction to the temperature-dependent sensitivity of the pressure gauge, the variation of the melting pressure of 4He below 320 mK obeys the pure T 4 law due to phonons with the accuracy of 0.5 μbar, and no sign of the transition is seen (Todoshchenko et al. in JETP Lett. 85:454, 2007). This sets the upper limit of ∼5⋅10−8 R for a possible excess entropy in high-quality 4He crystals below 320 mK. At higher temperatures the contribution from rotons in the superfluid 4He has been observed. The thermal expansion coefficient of the superfluid 4He has been measured in the range from 0.01 to 0.7 K with the accuracy of ∼10−7 1/K, or by two orders of magnitude better than in previous measurements. The roton contributions to the melting pressure and to the pressure in liquid at a constant volume are consistent and yield the value of 6.8 K for the roton gap, which is very close to the values obtained with other methods. As no contribution due to weakly interacting vacancies to the melting pressure of 4He has been observed, the lower limit of about 5.5 K for their activation energy can be set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Todoshchenko, H. Alles, H.J. Junes, A.Y. Parshin, V. Tsepelin, JETP Lett. 85, 454 (2007)

    Article  ADS  Google Scholar 

  2. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  3. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  4. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006)

    Article  ADS  Google Scholar 

  5. K. Shirahama, M. Kondo, S. Takada, Y. Shibayama, Bull. Am. Phys. Soc. 51, 450 (2006)

    Google Scholar 

  6. Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99, 015301 (2007)

    Article  ADS  Google Scholar 

  7. A. Penzev, Y. Yasuta, M. Kubota, J. Low Temp. Phys. 148, 677 (2007)

    Article  ADS  Google Scholar 

  8. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    Google Scholar 

  9. G.V. Chester, Phys. Rev. A 2, 256 (1970)

    Article  ADS  Google Scholar 

  10. M.W. Meisel, Physica B 178, 121 (1992), Amsterdam

    Article  ADS  Google Scholar 

  11. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302 (2007)

    Article  ADS  Google Scholar 

  12. A.C. Clark, J.T. West, M.H.W. Chan, Phys. Rev. Lett. 99, 135302 (2007)

    Article  ADS  Google Scholar 

  13. S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Science 313, 1098 (2006)

    Article  ADS  Google Scholar 

  14. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)

    Article  ADS  Google Scholar 

  15. M. Boninsegni et al., Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  Google Scholar 

  16. A.V. Balatsky, M.J. Graf, Z. Nussinov, S.A. Trugman, Phys. Rev. B 75, 094201 (2007)

    Article  ADS  Google Scholar 

  17. A.F. Andreev, JETP Lett. 85, 585 (2008)

    Article  Google Scholar 

  18. J. Toner, cond-mat/0707.3842 (2007)

  19. X. Dai, M. Ma, F.-C. Zhang, Phys. Rev. B 72, 132504 (2005)

    Article  ADS  Google Scholar 

  20. P.W. Anderson, W.F. Brinkman, D.A. Huse, Science 310, 1164 (2005)

    Article  ADS  Google Scholar 

  21. P.W. Anderson, Nature Phys. 3, 160 (2007)

    Article  ADS  Google Scholar 

  22. A.T. Dorsey, P.M. Goldbart, J. Toner, Phys. Rev. Lett. 96, 055301 (2006)

    Article  ADS  Google Scholar 

  23. A.C. Clark, M.H.W. Chan, J. Low Temp. Phys. 138, 853 (2005)

    Article  Google Scholar 

  24. X. Lin, A.C. Clark, M.H.W. Chan, Bull. Am. Phys. Soc. 52, 610 (2007)

    Google Scholar 

  25. X. Lin, A.C. Clark, M.H.W. Chan, Nature 449, 1025 (2007)

    Article  ADS  Google Scholar 

  26. J.P. Ruutu, P.J. Hakonen, A.V. Babkin, A.Y. Parshin, G. Tvalashvili, J. Low Temp. Phys. 112, 117 (1998)

    Article  Google Scholar 

  27. W.R. Gardner, J.K. Hoffer, N.E. Phillips, Phys. Rev. A 7, 1029 (1973)

    Article  ADS  Google Scholar 

  28. E.R. Grilly, J. Low Temp. Phys. 11, 33 (1973)

    Article  ADS  Google Scholar 

  29. R.L. Mills, S.G. Sydoriak, Ann. Phys. (NY) 34, 276 (1965)

    Article  ADS  Google Scholar 

  30. V. Tsepelin, H. Alles, A. Babkin, R. Jochemsen, A.Y. Parshin, I.A. Todoshchenko, J. Low Temp. Phys. 129, 489 (2002)

    Article  Google Scholar 

  31. G.C. Straty, E.D. Adams, Rev. Sci. Instrum. 40, 1393 (1969)

    Article  ADS  Google Scholar 

  32. D.S. Greywall, Phys. Rev. B 18, 2127 (1978)

    Article  ADS  Google Scholar 

  33. D.S. Greywall, Phys. Rev. B 21, 1329 (1979)

    Article  ADS  Google Scholar 

  34. G.A. Lengua, J.M. Goodkind, J. Low Temp. Phys. 79, 251 (1990)

    Article  ADS  Google Scholar 

  35. A.F. Andreev, Progr. Low Temp. Phys. 8, 101 (1982)

    Google Scholar 

  36. B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Phys. Rev. A 1, 250 (1970)

    Article  ADS  Google Scholar 

  37. H.B. Maris, S. Balibar, J. Low Temp. Phys. 147, 539 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Todoshchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todoshchenko, I.A., Alles, H., Junes, H.J. et al. Elementary Excitations in Solid and Liquid 4He at the Melting Pressure. J Low Temp Phys 150, 258–266 (2008). https://doi.org/10.1007/s10909-007-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9544-1

Keywords

PACS

Navigation