Skip to main content
Log in

Exact Liquid-Solid Transition from the Laughlin Liquid State to the Wigner Crystal in the Lowest Landau Level

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we study the exact liquid-solid transition between the Laughlin liquid and the Wigner crystal states in the lowest Landau level at low filling factors. The incompressible quantum fluid consists of strongly correlated electrons interacting with a strong magnetic field and cooled at a low temperature. According to composite fermions theory, in principle all fractions are possible. The Laughlin wave function is not particularly accurate at \(\upsilon\) \(\le 1/7\) where the transition from the liquid to crystal occurs. Independent of the model used to estimate the transition temperature, we note that the Wigner crystal phase is expected to exist at such low filling factors based on analytical calculation, into the series of fractional quantum Hall effect (FQHE) liquids prescribed by the composite fermions model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tsui, D.C., Stormer, H.L., Gossard, A.C.: Phys. Rev. Lett. 48, 559 (1982)

    ADS  Google Scholar 

  2. Jain, J.K.: Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  3. Jain, J.K.: Composite Fermions. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  4. Jheng, S.-D., Jiang, T.F., Cheng, S.-C.: Phys. Rev. A 88, 051601(R) (2013)

    Article  ADS  Google Scholar 

  5. Laughlin, R.B.: Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  6. Morf, R., Halperin, B.I.: Phys. Rev. Lett. 33, 2221 (1986)

    ADS  Google Scholar 

  7. Fano, G., Ortolani, F.: Phys. Rev. Lett. 37, 8179 (1988)

    ADS  Google Scholar 

  8. Ammar, M.A., Bentalha, Z., Bekhechi, S.: Condens. Matter. Phys. 19, 33702 (2016)

    Article  ADS  Google Scholar 

  9. Ammar, M.A.: Condens. Matter. Physics. 22, 23701 (2019)

    Google Scholar 

  10. Ahmed, Ammar M.: Few-Body Syst 63, 5 (2022)

    Article  ADS  Google Scholar 

  11. Wigner, E.P.: Phys. Rev. Lett. 46, 1002 (1934)

    ADS  Google Scholar 

  12. Maki, K., Zotos, X.: Phys. Rev. B 28, 4349 (1983)

    Article  ADS  Google Scholar 

  13. Levesque, D., Weis, J.J., MacDonald, A.H.: Phys. Rev. B 30, 1056 (1984)

    Article  ADS  Google Scholar 

  14. Lam, P.K., Girvin, S.M.: Phys. Rev. B 30, 473 (1984)

    Article  ADS  Google Scholar 

  15. Wolfram Research, Inc., Mathematica, Version 4.0 Champaign, Illinois (1999)

  16. Ciftja, O., Wexler, C.: Phys. Rev. 67, 075304 (2003)

    Article  Google Scholar 

  17. Girvin, S.M., MacDonald, A.H., Platzman, P.M.: Phys. Rev. Lett. 54, 581 (1985)

    Article  ADS  Google Scholar 

  18. Zhu, X., Louie, Steven G.: Phys. Rev. Lett. 70, 335 (1993)

    Article  ADS  Google Scholar 

  19. Yang, K., Haldane, F.D.M., Rezayi, E.H.: Phys. Rev. B 64, 081301(R) (2001)

    Article  ADS  Google Scholar 

  20. Pan, W., Stormer, H.L., Tsui, D.C., et al.: Phys. Rev. Lett 88, 176802 (2002)

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products. Academic Press, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Theoretical Laboratory “Laboratory of Physics of Experimental Techniques and Their Applications(LPTEA),” University of Medea, Algeria. We also thank A. EULDJI for her careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmed Ammar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The Coulomb Interaction Potential

The wave functions in the lowest Landau level are simple monomials in \(z_{j}\). Thus, let us apply the change \(r_{j}\) \(\rightarrow\) \(z_{j}=x_{j}-i y_{j}=r_{j}\)e\(^{-i\varphi _{j}}, j=1,...,N\). The electron-electron interaction potential

$$\begin{aligned} \widehat{V}_{ee}=\sum _{i<j}^{N}\ \frac{e_{0}^{2}}{|\overrightarrow{r}_{i}-\overrightarrow{r}_{j}|}, \end{aligned}$$
(12)

where \({r}_{i}\) (or \({r}_{j}\)) indicates the electron vector position. For a given wave function \(\mathit{\Psi}\), these energies are determined using the following formulae:

$$\begin{aligned} \left\langle \widehat{V}_{ee}\right\rangle = \frac{\left\langle \mathit{\Psi} |{V}_{ee}| \mathit{\Psi} \right\rangle }{ \left\langle \mathit{\Psi} \mathit{\Psi} \right\rangle }, \end{aligned}$$
(13)

The term \(\left\langle \widehat{V}_{ee}\right\rangle\) is written as follows:

$$\begin{aligned} \left\langle \widehat{V}_{ee}\right\rangle =\frac{N(N-1)}{2}\frac{\int d^{2}r_{1}\cdot \cdot \cdot d^{2}r_{N}\frac{e_{0}^{2}}{|r_{1}-r_{2}|}|\mathit{\Psi} (r_{1},\dots ,r_{N})|^{2}}{\int d^{2}r_{1}\cdot \cdot \cdot d^{2}r_{N}|\mathit{\Psi} (r_{1},\dots ,r_{N})|^{2}}. \end{aligned}$$
(14)

The electron-background interaction potential

$$\begin{aligned} \widehat{V}_{eb}=-\rho \sum _{i<j}^{N}\int _{S_{N}}^{{}}d^{2}r\frac{e_{0}^{2}}{|\overrightarrow{r}_{i}-\overrightarrow{r}|}, \end{aligned}$$
(15)

\(\overrightarrow{r}_{i}\) and \(\overrightarrow{r}\) are background coordinates. \(S_{N}\) is the area of the disk and \(\rho\) is the density of the system defined by

$$\begin{aligned} \rho = \frac{\upsilon }{2 \pi l_{0}^{2}}, \end{aligned}$$
(16)
$$\begin{aligned} \left\langle \widehat{V}_{eb}\right\rangle = \frac{\left\langle \mathit{\Psi} |{V}_{eb}| \mathit{\Psi} \right\rangle }{ \left\langle \mathit{\Psi} \mathit{\Psi} \right\rangle }, \end{aligned}$$
(17)

is the electron-background interaction energy and

$$\begin{aligned} \left\langle \widehat{V}_{eb}\right\rangle =-\rho N \frac{\int d^{2}r_{1}\cdot \cdot \cdot d^{2}r_{N} |\mathit{\Psi} (r_{1},\dots ,r_{N})|^{2}\int _{S_{N}}^{{}}d^{2}r\frac{e_{0}^{2}}{|r_{1}-r|}}{\int d^{2}r_{1}\cdot \cdot \cdot d^{2}r_{N}|\mathit{\Psi} (r_{1},\dots ,r_{N})|^{2}}. \end{aligned}$$
(18)

with

$$\begin{aligned} \int _{S_{N}}^{{}}d^{2}r\frac{e_{0}^{2}}{|r_{1}-r|}=2 \pi R_{N}\int _{0}^{\infty }\frac{dq}{q}J_{1}(q)J_{0}(\frac{q}{R_{N}}r_{1}), \end{aligned}$$
(19)

where is the \(J_{n}(x)\) n-th order Bessel functions [21].

The background-background interaction potential

$$\begin{aligned} \widehat{V}_{bb}=\frac{\rho ^{2}}{2}\sum _{i<j}^{N}\int _{S_{N}}^{{}}d^{2}r\int _{S_{N}}^{{}}d^{2}r^{\prime }\frac{e_{0}^{2}}{|\overrightarrow{r}-\overrightarrow{r}^{\prime }|}, \end{aligned}$$
(20)
$$\begin{aligned} \left\langle \widehat{V}_{bb}\right\rangle = \frac{\left\langle \mathit{\Psi} |{V}_{bb}| \mathit{\Psi} \right\rangle }{ \left\langle \mathit{\Psi} \mathit{\Psi} \right\rangle }, \end{aligned}$$
(21)
$$\begin{aligned} \left\langle \widehat{V}_{bb}\right\rangle =\frac{8N}{3\pi }\frac{\sqrt{\upsilon N}}{2}\frac{e_{0}^{2}}{l_{0}}. \end{aligned}$$
(22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, M.A., Guehlouz, H. & Euldji, A. Exact Liquid-Solid Transition from the Laughlin Liquid State to the Wigner Crystal in the Lowest Landau Level. J Supercond Nov Magn 36, 11–16 (2023). https://doi.org/10.1007/s10948-022-06466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06466-4

Keywords

Navigation