Skip to main content
Log in

Probing the Photocatalytic Degradation of Acid Orange 7 Dye with Chitosan Impregnated Hydroxyapatite/Manganese Dioxide Composite

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA), is the major component present in bone minerals which has remarkable properties due to its bioactivity and biocompatibility. Fish bone is a natural biowaste contains calcium phosphate act as main constituent for hydroxyapatite. Based on the potential characteristic nature of HA, in this study our aim is to prepare HA from fish bone, then incorporated by using manganese dioxide (MN) and chitosan (CS) to get composite (HA/MN/CS) which possess effective behaviour in environmental applications. Predominantly the composite is to enhance the photocatalytic property of HA/MN/CS and also has been evaluated for photodegradation of dye. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Field emission scan electron microscopy (FESEM) methods were used to characterize the composite formed. The as-prepared composite were used to degrade the dye AO7 under direct sunlight irradiation, UV light (254 nm and 365 nm wavelength). The result shows that composite have better degrade the dye AO7 under 365 nm of 93% within 90 min of exposure to reveal the environmental application of the composite. This present study utilize the composite for the degradation of dye and it would be a safer, non-toxic, and potential candidate for the photodegradation of organic dyes in wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.F. Chowdhury, S. Khandaker, F. Sarker, A. Islam, M.T. Rahman, M.R. Awual, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114061

    Article  Google Scholar 

  2. B.L. Alderete, J. Silva, R. Godoi, F.R. Silva, S.R. Taffarel, L.P. Silva, A.L.H. Garcia, H. Mitteregger, H.L. de Neubauer Amorim, J.N. Picada, Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.128291

    Article  Google Scholar 

  3. M.M. Hassan, C.M. Carr, Chemosphere (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  Google Scholar 

  4. D.A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. (2019). https://doi.org/10.1007/s13762-018-2130-z

    Article  Google Scholar 

  5. B.O. Orimolade, O.A. Arotiba, Electrocatalysis (2019). https://doi.org/10.1007/s12678-019-00534-5

    Article  Google Scholar 

  6. G. Swain, S. Singh, R.K. Sonwani, R.S. Singh, R.P. Jaiswal, B.N. Rai, Bioresour. Technol. Rep. (2021). https://doi.org/10.1016/j.biteb.2020.100620

    Article  Google Scholar 

  7. C. Santhosh, E. Daneshvar, K.M. Tripathi, P. Baltrėnas, T. Kim, E. Baltrėnaitė, A. Bhatnagar, Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-09275-1

    Article  Google Scholar 

  8. E.A. Abdelrahman, R.M. Hegazey, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-018-1005-6

    Article  Google Scholar 

  9. S.L. Chiam, S.Y. Pung, F.Y. Yeoh, Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-019-07568-8

    Article  Google Scholar 

  10. A. Tabaï, O. Bechiri, M. Abbessi, Euro-Mediterr. J. Environ. Integr. (2017). https://doi.org/10.1007/s41207-017-0017-x

    Article  Google Scholar 

  11. K. Hamidian, A.H. Rigi, A. Najafidoust, M. Sarani, A. Miri, Bioprocess Biosyst. Eng. (2021). https://doi.org/10.1007/s00449-021-02636-1

    Article  Google Scholar 

  12. A.N. Amenaghawon, C.L. Anyalewechi, H. Darmokoesoemo, H.S. Kusuma, J. Environ. Manage. (2022). https://doi.org/10.1016/j.jenvman.2021.113989

    Article  Google Scholar 

  13. F. Scalera, A. Quarta, D.M. Tobaldi, R.C. Pullar, C. Piccirillo, Mater. Chem. Front. (2021). https://doi.org/10.1039/D1QM00584G

    Article  Google Scholar 

  14. S. Taha, S. Begum, V.N. Narwade, D.I. Halge, J.W. Dadge, M.P. Mahabole, R.S. Khairnar, K.A. Bogle, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122228

    Article  Google Scholar 

  15. S.E. Panchu, S. Sekar, V. Rajaram, E. Kolanthai, S.J. Panchu, H.C. Swart, S.N. Kalkura, J. Inorg. Organomet. Polym. (2022). https://doi.org/10.1007/s10904-021-02103-0

    Article  Google Scholar 

  16. E.C. Paris, J.O.D. Malafatti, A.J. Moreira, L.C. Santos, C.R. Sciena, A. Zenatti, A. Zenatti, M.T. Escote, V.R. Mastelaro, M.R. Joya, Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-021-18263-y

    Article  Google Scholar 

  17. C. El Bekkali, H. Bouyarmane, M. El Karbane, S. Masse, A. Saoiabi, T. Coradin, A. Laghzizil, Colloids Surf. A (2018). https://doi.org/10.1016/j.colsurfa.2017.12.051

    Article  Google Scholar 

  18. Y. Pang, L. Kong, D. Chen, G. Yuvaraja, S. Mehmood, J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121447

    Article  Google Scholar 

  19. G. Bharath, N. Ponpandian, RSC Adv. (2015). https://doi.org/10.1039/C5RA15703J

    Article  Google Scholar 

  20. Y. Ma, J. Chen, Y. Wang, Y. Zhao, G. Zhang, T. Sun, Res. Chem. Intermed. (2021). https://doi.org/10.1007/s11164-020-04312-7

    Article  Google Scholar 

  21. M.A. Bhatti, A. Tahira, K.F. Almani, A.L. Bhatti, B. Waryani, A. Nafady, Z.H. Ibupoto, Res. Chem. Intermed. (2021). https://doi.org/10.1007/s11164-020-04391-6

    Article  Google Scholar 

  22. V. Hoseinpour, M. Souri, N. Ghaemi, Micro Nano. Lett. (2018). https://doi.org/10.1049/mnl.2018.5008

    Article  Google Scholar 

  23. X. Zhang, H. Zhao, Z. Song, J. Zhao, Z.A. Ma, M. Zhao, Y. Xing, P. Zhang, N. Tsubaki, Transit. Met. Chem. (2019). https://doi.org/10.1007/s11243-019-00331-5

    Article  Google Scholar 

  24. R. Rostami, M. Faraji, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01546-1

    Article  Google Scholar 

  25. Y. Zhang, Y. Wu, L. Su, C. Zhu, X. Wu, Anal. Methods (2022). https://doi.org/10.1039/D2AY00417H

    Article  Google Scholar 

  26. S.L. Chiam, S.Y. Pung, F.Y. Yeoh, M. Ahmadipour, Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.125848

    Article  Google Scholar 

  27. H. Zhang, S. Rong, P. Zhang, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c05009

    Article  Google Scholar 

  28. Y. Song, M. Jiang, L. Zhou, H. Yang, J. Zhang, Carbohydr. Polym. (2022). https://doi.org/10.1016/j.carbpol.2022.119644

    Article  Google Scholar 

  29. M. Manimohan, S. Pugalmani, M.A. Sithique, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01487-9

    Article  Google Scholar 

  30. R. Suresh, S. Rajendran, T.K. Hoang, D.N. Vo, M.N. Siddiqui, L. Cornejo Ponce, Environ. Res. (2021). https://doi.org/10.1016/j.envres.2021.111324

    Article  Google Scholar 

  31. S. Khan, A. Khan, N. Ali, S. Ahmad, W. Ahmad, S. Malik, N. Ali, H. Khan, S. Shah, M. Bilal, Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101402

    Article  Google Scholar 

  32. M. Manimohan, S. Pugalmani, K. Ravichandran, M.A. Sithique, RSC Adv. (2020). https://doi.org/10.1039/D0RA01724H

    Article  Google Scholar 

  33. A.F. Ahamed, M. Manimohan, N. Kalaivasan, J. Inorg. Organomet. Polym. (2022). https://doi.org/10.1007/s10904-022-02401-1

    Article  Google Scholar 

  34. U. Asim, S.M. Husnain, N. Abbas, F. Shahzad, A.R. Khan, T. Ali, J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.03.027

    Article  Google Scholar 

  35. H. Zhang, A. Wu, H. Fu, L. Zhang, H. Liu, S. Zheng, H. Wan, Z. Xu, RSC Adv. (2017). https://doi.org/10.1039/C7RA05955H

    Article  Google Scholar 

  36. C.Y. Beh, E.M. Cheng, N.M. Nasir, S.K. Eng, M.A. Majid, M.J.M. Ridzuan, S.F. Khor, N.S. Khalid, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.034

    Article  Google Scholar 

  37. S. Gautam, C. Sharma, S.D. Purohit, H. Singh, A.K. Dinda, P.D. Potdar, C. Chou, N.C. Mishra, Mater. Sci. Eng. (2021). https://doi.org/10.1016/j.msec.2020.111588

    Article  Google Scholar 

  38. A.S. Al-Wasidi, Y.G. Abouelreash, S. AlReshaidan, A.M. Naglah, J. Inorg. Organomet. Polym. (2022). https://doi.org/10.1007/s10904-021-02168-x

    Article  Google Scholar 

  39. W. Di, X. Zhang, W. Qin, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.12.204

    Article  Google Scholar 

  40. F. Azizi, F. Heidari, F. Fahimipour, M. Sajjadnejad, D. Vashaee, L. Tayebi, Int. J. Appl. Ceram. Technol. (2020). https://doi.org/10.1111/ijac.13549

    Article  Google Scholar 

  41. S. Sebastiammal, A.S.L. Fathima, S. Devanesan, M.S. AlSalhi, J. Henry, M. Govindarajan, B. Vaseeharan, J. Drug. Delivery. Sci. Technol. (2020). https://doi.org/10.1016/j.jddst.2020.101752

    Article  Google Scholar 

  42. S. Kumar, C. Gautam, B.S. Chauhan, S. Srikrishna, R.S. Yadav, S.B. Rai, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.180

    Article  Google Scholar 

  43. N.K. Nga, L.T.T. Tam, N.T. Ha, P.H. Viet, T.Q. Huy, RSC Adv. (2020). https://doi.org/10.1039/D0RA09432C

    Article  Google Scholar 

  44. H. Canziani, B. Hanschmann, F. Tischer, A. Sommereyns, T. Distler, J. Schramm, N. Hesse, J. Schmidt, A. Grünewald, R. Detsch, A. Boccaccini, M. Maskos, M. Schmidt, N. Vogel, Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202205730

    Article  Google Scholar 

  45. D. Borah, J. Rout, D. Gogoi, N.N. Ghosh, C.R. Bhattacharjee, Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.109312

    Article  Google Scholar 

  46. A. Shekhawat, S. Kahu, D. Saravanan, R. Jugade, Curr. Res. Green Sustainable Chem. (2022). https://doi.org/10.1016/j.crgsc.2021.100246

    Article  Google Scholar 

  47. Q. Chang, K.K. Li, S.L. Hu, Y.G. Dong, J.L. Yang, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.03.140

    Article  Google Scholar 

  48. Q. Zhou, L. Zhang, P. Zuo, Y. Wang, Z. Yu, RSC Adv. (2018). https://doi.org/10.1039/C8RA06930A

    Article  Google Scholar 

  49. B.R. Shah, U.D. Patel, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105458

    Article  Google Scholar 

  50. D. Li, N. Zhang, R. Yuan, H. Chen, F. Wang, B. Zhou, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.106243

    Article  Google Scholar 

  51. V. Balakumar, H. Kim, R. Manivannan, H. Kim, J.W. Ryu, G. Heo, Y.A. Son, Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.jece.2021.105458

    Article  Google Scholar 

  52. R. Yuan, L. Hu, P. Yu, H. Wang, Z. Wang, J. Fang, Chemosphere (2018). https://doi.org/10.1016/j.chemosphere.2018.01.135

    Article  Google Scholar 

  53. K. Saravanakumar, V. Muthuraj, S. Vadivel, RSC Adv. (2016). https://doi.org/10.1039/C6RA10444D

    Article  Google Scholar 

  54. E.B. Butler, C.C. Chen, Y.T. Hung, M.S. Alahmad, Y.P. Fkou, Integr. Ferroelectr. (2016). https://doi.org/10.1080/10584587.2016.1157779

    Article  Google Scholar 

  55. E.B. Silvestri, M.G. Goncalves, P.A. da Silva Veiga, T.T. da Silva Matos, P. Peralta-Zamora, A.S. Mangrich, J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.102879

    Article  Google Scholar 

  56. T.S. Anirudhan, J.R. Deepa, A.S. Nair, J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2016.12.014

    Article  Google Scholar 

  57. S. Vigneshwaran, P. Sirajudheen, C.P. Nabeena, S. Meenakshi, Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2020.125789

    Article  Google Scholar 

  58. H. Salari, H.H. Hosseini, Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2020.111046

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks to Department of chemistry, Anna University and management of Islamiah College (Autonomous), Vaniyambadi, Tamilnadu, India to facilitated and provided the sophisticated laboratory to carry this research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AFA designed and carried out the experiment, collected the data, analysed the data and wrote the manuscript with support from NK and RT. NK encouraged to investigate, supervised the finding of this work and reviewed the manuscript. RT aided the technical support and assisted in data collection.

Corresponding author

Correspondence to N. Kalaivasan.

Ethics declarations

Conflict of interest

There are no conflict of interest declared by all the authors and we have no conflict of interest to disclose any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamed, A.F., Kalaivasan, N. & Thangaraj, R. Probing the Photocatalytic Degradation of Acid Orange 7 Dye with Chitosan Impregnated Hydroxyapatite/Manganese Dioxide Composite. J Inorg Organomet Polym 33, 170–184 (2023). https://doi.org/10.1007/s10904-022-02492-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02492-w

Keywords

Navigation