Skip to main content
Log in

Influence of hydrothermal synthesis temperature on the redox and oxygen mobility properties of manganese oxides in the catalytic oxidation of toluene

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of MnOx samples synthesized by hydrothermal methods at different temperatures were investigated as catalysts for the oxidation of toluene. The optimum oxidation performance was achieved with the catalyst prepared at 120 °C (Mn-120), for which complete conversion of toluene was attained at 250 °C. The Mn-120 sample possessed the highest concentration of Mn3+ and the highest initial H2 consumption rate, which are indicative of abundant crystal defects and superior reducibility. In addition, Mn-120 exhibited excellent oxidation ability due to the abundance of lattice oxygen species and excellent oxygen mobility. Therefore, the superior catalytic performance of Mn-120 could be attributed mainly to its redox performance and abundant crystal defects, both of which are determined by the temperature of the hydrothermal synthesis of MnOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang X, Yu X, Lin M, Ma X, Ge M (2018) Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal Today. https://doi.org/10.1016/j.cattod.2018.04.041

    Article  Google Scholar 

  2. Qu Z, Gao K, Fu Q, Qin Y (2014) Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn–Co oxides prepared by two-step hydrothermal method. Catal Commun 52:31–35

    Article  CAS  Google Scholar 

  3. Wang X, Liu Y, Zhang T, Luo Y, Lan Z, Zhang K, Zuo J, Jiang L, Wang R (2017) Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: in situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal 7:1626–1636

    Article  CAS  Google Scholar 

  4. Li J, Tang W, Liu G, Li W, Deng Y, Yang J, Chen Y (2016) Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catal Today 278:203–208

    Article  CAS  Google Scholar 

  5. Li L, Jing F, Yan J, Jing J, Chu W (2017) Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion. Catal Today 297:167–172

    Article  CAS  Google Scholar 

  6. Saque SM, Kondarides DI, Verykios XE (2009) Catalytic activity of supported platinum and metal oxide catalysts for toluene oxidation. Top Catal 52:517–527

    Article  Google Scholar 

  7. He C, Yue L, Zhang X, Li P, Dou B, Ma C, Hao Z (2012) Deep catalytic oxidation of benzene, toluene, ethyl acetate over Pd/SBA-15 catalyst: reaction behaviors and kinetics. Asia-Pac J Chem Eng 7:705–715

    Article  CAS  Google Scholar 

  8. Han Y, Ramesh K, Chen L, Widjaja E, Chilukoti S, Chen F (2007) Observation of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic combustion of methane by in situ Raman spectroscopy. J Phys Chem C 111:2830–2833

    Article  CAS  Google Scholar 

  9. Wang L, Zhang C, Huang H, Li X, Zhang W, Lu M, Li M (2016) Catalytic oxidation of toluene over active MnOx catalyst prepared via an alkali-promoted redox precipitation method. React Kinet Mech Catal 118:605–619

    Article  CAS  Google Scholar 

  10. Du J, Qu Z, Dong C, Song L, Qin Y, Huang N (2018) Low-temperature abatement of toluene over Mn–Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl Surf Sci 433:1025–1035

    Article  CAS  Google Scholar 

  11. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for removal of toluene. Environ Sci Technol 46:4034–4041

    Article  CAS  Google Scholar 

  12. Cheng G, Yu L, He B, Sun M, Zhang B, Ye W, Lan B (2017) Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies. Appl Surf Sci 409:223–231

    Article  CAS  Google Scholar 

  13. Liao Y, Zhang X, Peng R, Zhao M, Ye D (2017) Catalytic properties of manganese oxide polyhedral with hollow and solid morphologies in toluene removal. Appl Surf Sci 405:20–28

    Article  CAS  Google Scholar 

  14. Liao Y, Fu M, Chen L, Wu J, Huang B, Ye D (2013) Catalytic oxidation of toluene over nanorod-structured Mn–Ce mixed oxides. Catal Today 216:220–228

    Article  CAS  Google Scholar 

  15. Sun H, Liu Z, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65

    Article  CAS  Google Scholar 

  16. Piumetti M, Fino D, Russo N (2015) Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl Catal B Environ 163:277–287

    Article  CAS  Google Scholar 

  17. Tang W, Wu X, Liu G, Li S, Li D, Li W, Chen Y (2015) Preparation of hierarchical layer-stacking Mn–Ce composite oxide for catalytic total oxidation of VOCs. J Rare Earth 33:62–69

    Article  CAS  Google Scholar 

  18. Qi K, Xie J, Fang D, Liu X, Gong P, Li F, He F (2018) Mn5O8 nanoflowers prepared via a solvothermal route as efficient denitration catalysts. Mater Chem Phys 209:10–15

    Article  CAS  Google Scholar 

  19. Hu F, Chen J, Peng Y, Song H, Li K, Li J (2018) Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chem Eng J 331:425–434

    Article  CAS  Google Scholar 

  20. Kim SC, Park Y-K, Nah JW (2014) Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene. Powder Technol 226:292–298

    Article  Google Scholar 

  21. Tang Q, Gong X, Zhao P, Chen Y, Yang Y (2010) Copper-manganese oxide catalysts supported on alumina: physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol. Appl Catal A Gen 389:101–107

    Article  CAS  Google Scholar 

  22. Xu J, Deng Y, Luo Y, Mao W, Yang X, Han Y (2013) Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. J Catal 300:225–234

    Article  CAS  Google Scholar 

  23. Sun X, Guo R, Liu J, Fu Z, Liu S, Pan W, Shi X, Qin H, Wang Z, Liu X (2018) The enhanced SCR performance of Mn/TiO2 catalyst by Mo modification: Identification of the promotion mechanism. Int J Hydrogen Energy 1:3. https://doi.org/10.1016/j.ijhydene.2018.07.057

    Article  CAS  Google Scholar 

  24. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ 99:353–363

    Article  CAS  Google Scholar 

  25. Yu D, Liu Y, Wu Z (2010) Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol-gel method. Catal Commun 11:788–791

    Article  CAS  Google Scholar 

  26. Zhang J, Li Y, Wang L, Zhang C, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5:2305–2313

    Article  CAS  Google Scholar 

  27. Xu R, Wang X, Wang D, Zhou K, Li Y (2006) Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J Catal 237:426–430

    Article  CAS  Google Scholar 

  28. Lee SM, Park KH, Kim SS, Kwon DW, Hong SC (2012) Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3. J Air Waste Manag Assoc 62:1085–1092

    Article  CAS  Google Scholar 

  29. Bai B, Li J, Hao J (2015) 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catal B Environ 164:241–250

    Article  CAS  Google Scholar 

  30. Chen J, Chen X, Xu W, Xu Z, Jia H, Chen J (2018) Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl Catal B Environ 224:825–835

    Article  CAS  Google Scholar 

  31. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Hydrolysis driving redox reaction to synthesize Mn–Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293

    Article  CAS  Google Scholar 

  32. Zhang C, Wang C, Hua W, Guo Y, Lu G, Gil S, Giroir-Fendler A (2016) Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Appl Catal B Environ 186:173–183

    Article  CAS  Google Scholar 

  33. Wu Y, Zhang Y, Liu M, Ma Z (2010) Complete catalytic oxidation of o-xylene over Mn–Ce oxides prepared using a redox-precipitation method. Catal Today 153:170–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21872096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxian Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, H., Song, Z. et al. Influence of hydrothermal synthesis temperature on the redox and oxygen mobility properties of manganese oxides in the catalytic oxidation of toluene. Transit Met Chem 44, 663–670 (2019). https://doi.org/10.1007/s11243-019-00331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00331-5

Navigation