Skip to main content
Log in

Sol–gel assisted incremental substitution of Ni with Ba in barium ferrichromites and their photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dye contamination of water has been getting worse in recent years, and this has major toxicological impacts on both the ecosystem and human health. Considering this perspective, we have synthesized the Ba1−xNixFeCrO4 (0.0 ≤ x ≤ 1.0) by incrementally substituting Ni with Ba using the sol–gel method. In the present work, we have used a unique and novel chemical procedure to synthesize ultra-fine, homogeneous, reproducible powders that overcome all the drawbacks of conventional methods using nitrate salts of the constituent metal ions in aqueous solutions. The synthesized materials were used as different physicochemical characterizations such as XRD, SEM, EDAX, and XPS. Furthermore, the resulting composites were evaluated for their photocatalytic study in degrading methyl orange dye under UV–Visible light illumination. Notably, NiFeCrO4 (x = 1.0) showed excellent photocatalytic performance, attributed to its relatively narrow band gap and favorable interface properties, which facilitate the absorption of a broader range of wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. M.K. Shobana, G. Nandhini, S. Kavita, V.S. Kumar, T. Pazhanivel, Mater. Sci. Engineering: B 286, 116030 (2022)

    CAS  Google Scholar 

  2. G. Nandhini, S. Kavita, T. Pazhanivel, M.K. Shobana, J. Mater. Sci.: Mater. Electron. 34, 1426 (2023)

    CAS  Google Scholar 

  3. A.M. Elgarahy, K.Z. Elwakeel, S.H. Mohammad, G.A. Elshoubaky, Clean. Eng. Technol. 4, 100209 (2021)

    Google Scholar 

  4. I.C. Vasilachi, D.M. Asiminicesei, D.I. Fertu, M. Gavrilescu, Water 13, 181 (2021)

    CAS  Google Scholar 

  5. J. Kaur, G. Mudgal, A. Negi, J. Tamang, S. Singh, G.B. Singh, J.C. Bose, K.S. Debnath, M.A. Wadaan, M. Farooq Khan, J. Ruokolainen, K.K. Kesari, Water 15, 9 (2023)

    Google Scholar 

  6. A. Kaur, M. Kaur, V. Singh, P. Vyas, Magnetochemistry 9, 127 (2023)

    CAS  Google Scholar 

  7. J. Su, L. Guo, N. Bao, C.A. Grimes, Nano Lett. 11, 1928–1933 (2011)

    CAS  PubMed  Google Scholar 

  8. H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.-S. Huang, J.-K. Lee, I.S. Cho, X. Zheng, Energy Environ. Sci. 11, 1299 (2018)

    CAS  Google Scholar 

  9. M. Kurian, S. Thankachan, Open. Ceram. 8, 100179 (2021)

    CAS  Google Scholar 

  10. M.I. Nabeel, D. Hussain, N. Ahmad M. N. Haq, S. G. Musharraf, Nanoscale Adv. 5, 5214 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Weil, Inorganics 7, 122 (2019)

    CAS  Google Scholar 

  12. J. Fengg, R. Xiong, L. Cheng, Y. Liu, J. Supercond. Novel Magn. 30(12), 1 (2017)

    Google Scholar 

  13. Y. Nassereddine, M. Benyoussef, B. Asbani, M. El Marssi, M. Jouiad, Nanomaterials 14(1), 51 (2024)

    CAS  Google Scholar 

  14. D. Harbaoui, M.M.S. Sanad, C. Rossignol, E.K. Hlil, N. Amdouni, K. Zaidat, S. Obbade, J. Alloys Compd. 901, 1 (2022)

    Google Scholar 

  15. A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzal, N. Barka, Appl. Surf. Sci. Adv. 6, 100145 (2021)

    Google Scholar 

  16. W.A. Shatti, Z.M.A. Abbas, Z.T. Khodair, J. Ovonic Res. 18, 473 (2022)

    CAS  Google Scholar 

  17. Y. Meng, M. He, Q. Zeng, D. Jiao, S. Shukla, R. Ramanujan, Z. Liu, J. Alloys Compd. 583, 220 (2014)

    CAS  Google Scholar 

  18. D. Navas, S. Fuentes, A. Castro-Alvarez, Gels 7, 275 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Kefeni, B. Mamba, Sustain. Mater. Technol. 23, e00140 (2019)

    Google Scholar 

  20. W.K. Tan, H. Muto, G. Kawamura, Z. Lockman, A. Matsuda, Nanomater (Basel Switzerland) 11, 181 (2021)

    CAS  Google Scholar 

  21. M.E.C. Ferreira, L. De Soletti, E.G. Bernardino, H.B. Quesada, F. Gasparotto, R. Bergamasco, N.U. Yamaguchi, Catalysts 12, 745 (2022)

    CAS  Google Scholar 

  22. Z. Bielan, S. Dudziak, A. Kubiak, E. Kowalska, Appl. Sci. 11, 10160 (2021)

    CAS  Google Scholar 

  23. K.K. Kefeni, B.B. Mamba, Sustain. Mater. Technol. 23, e00140 (2020)

    CAS  Google Scholar 

  24. F.H.P. Lopes, L.F.G. Noleto, V.E.M. Vieira, P.B. De Sousa, A.C.S. Jucá, Y.L. Oliveira, K.R.B. Costa, A.F. Gouveia, M.A.P. Almeida, L.S. Cavalcante, J. Inorg. Organomet. Polym. Mater. 33, 424 (2023)

    CAS  Google Scholar 

  25. M. Salah, I. Morad, H. Elhosiny Ali, M.M. Mostafa, M.M. El-Desoky, J. Inorg. Organomet. Polym. 31, 3700 (2021)

    CAS  Google Scholar 

  26. Y.A. Alsabah, A.A. Elbadawi, E.M. Abdelrahman, M.A. Mustafa, Siddig, J. Mater. Sci. Chem. Eng. 4, 61–70 (2016)

    CAS  Google Scholar 

  27. Y. Zhang, W. Zhang, C. Yu, Z. Liu, X. Yu, F. Meng, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.12.153

    Article  PubMed  PubMed Central  Google Scholar 

  28. A.I. Khudiar, A.M. Oufi, Sens. Actuators B 340, 129633 (2021)

    CAS  Google Scholar 

  29. D.K. Narale, P.D. Kumbhar, R.R. Bhosale, R.C. Ghaware, K.D. Patil, J.H. Kim, S.S. Kolekar, J. Energy Storage 66, 107477 (2023)

    Google Scholar 

  30. Y. Alsabah, A. Elbadawi, E. Mustafa, M. Siddig, J. Mater. Sci. Chem. Eng. 4, 61–70 (2016)

    CAS  Google Scholar 

  31. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 29, 5459 (2018)

    CAS  Google Scholar 

  32. P.N. Kapoor, A.K. Bhagi, R.S. Mulukutla, K.J. Klabunde, Dekeer Encycl Nanoscience and Nanotechnology (Marcel Dekker Inc, New York, 2004), pp. 2007–2017

    Google Scholar 

  33. K.C.B. Naidu, W. Madhuri, J. Magn. Magn. Mater. 420, 109–116 (2016)

    Google Scholar 

  34. B. Ingale, D. Nadargi, J. Nadargi, R. Suryawanshi, H. Shaikh, M.A. Alam, M.S. Tamboli, S.S. Suryavanshi, ACS Omega 8, 30508–30518 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. V.T. Vader, S. Bajaga, J. Inorg. Organomet. Polym. Mater. 28, 1414 (2018)

    CAS  Google Scholar 

  36. L.G. Antoshina, E.N. Evstaf’eva, A.I. Kokorev, Phys. Solid State 49, 1476 (2007)

    CAS  Google Scholar 

  37. C. Chuan Hsueh, B. Yann Chen, J. Hazard. Mater. 141, 842–849 (2007)

    Google Scholar 

  38. L. Wu, X. Liu, L. Guocheng, R. Zhu, L. Tian, M. Liu, Y. Li, W. Rao, T. Liu, L. Liao, Sci. Rep. 11, 10640 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M.B. Tahir, M. Sohaib, M. Sagir, M. Rafique, Encycl Smart Mater. (2020). https://doi.org/10.1016/2FB978-0-12-815732-9.00006-1

    Article  Google Scholar 

  40. C. Juan, J. De La Lastra, F. Plou, E. Perez, Int. J. Mol. Sci. 22, 4642 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Catalysts 9, 191 (2019)

    Google Scholar 

  42. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, J. Magn. Magn. Mater. 476, 124 (2019)

    CAS  Google Scholar 

  43. S. Deshmukh, M. Tamboli, H. Shaikh, S.B. Babar, D. Hiwarale, A. Gautam, A. Shaikh, A. Alam, S. Khetre, S. Bamane, Coatings 11, 165 (2021)

    CAS  Google Scholar 

  44. M. Janczarek, E. Kowalska, Catalysts 7, 317 (2017)

    Google Scholar 

  45. S.M. Deshmukh, S.S. Patil, S.B. Babar, S. Alshehri, M.M. Ghoneim, A.M. Tamboli, N.H. Lam, N.T.N. Truong, C.D. Kim, M.S. Tamboli, S.M. Khetre, S.R. Bamane, Metals (Basel) 12, 733 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia for funding this research (IFKSUOR3-108-4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing-original draft, and methodology, P.L.; formal analysis, S.D., and D.N.; funding acquisition, H.M.S., S.M.A.Z., and M.A.A.; resources. M.S.T. and N.T.N.T.; writing—review and editing, Supervision, V.T.V. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nguyen Tam Nguyen Truong or Vijay T. Vader.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, P.T., Deshmukh, S.M., Narale, D.K. et al. Sol–gel assisted incremental substitution of Ni with Ba in barium ferrichromites and their photocatalytic activity. J Mater Sci: Mater Electron 35, 769 (2024). https://doi.org/10.1007/s10854-024-12479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12479-7

Navigation